Home
Class 12
MATHS
The value of sin{cot^(-1)[cos(cot^(-1)((...

The value of `sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]}` is equal to `(x gt0)`

A

`sqrt((1+x^(2))/(2+x^(2)))`

B

`sqrt((1-x^(2))/(2+x^(2)))`

C

`sqrt((1+x^(2))/(2-x^(2)))`

D

`sqrt((2+x^(2))/(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin\left(\cot^{-1}\left[\cos\left(\cot^{-1}\left(\frac{1}{x}\right)\right)\right]\right) \) for \( x > 0 \). ### Step-by-Step Solution: 1. **Let \( \alpha = \cot^{-1}\left(\frac{1}{x}\right) \)**: - By definition, \( \cot(\alpha) = \frac{1}{x} \). - This implies \( x = \frac{1}{\cot(\alpha)} = \tan(\alpha) \). **Hint**: Remember that \( \cot^{-1}(y) \) gives an angle whose cotangent is \( y \). 2. **Find \( \cos(\alpha) \)**: - In a right triangle where \( \tan(\alpha) = x \), we can represent the sides as follows: - Opposite side = \( x \) - Adjacent side = \( 1 \) - Using the Pythagorean theorem, the hypotenuse \( h \) is given by: \[ h = \sqrt{x^2 + 1^2} = \sqrt{1 + x^2} \] - Therefore, \( \cos(\alpha) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{1}{\sqrt{1 + x^2}} \). **Hint**: Use the triangle relationships to find cosine based on tangent. 3. **Now find \( \cot^{-1}(\cos(\alpha)) \)**: - We have \( \cos(\alpha) = \frac{1}{\sqrt{1 + x^2}} \). - Let \( \beta = \cot^{-1}\left(\frac{1}{\sqrt{1 + x^2}}\right) \). - This means \( \cot(\beta) = \frac{1}{\sqrt{1 + x^2}} \). **Hint**: Recognize that \( \cot^{-1}(y) \) gives an angle whose cotangent is \( y \). 4. **Find \( \sin(\beta) \)**: - In a right triangle where \( \cot(\beta) = \frac{1}{\sqrt{1 + x^2}} \): - Opposite side = \( 1 \) - Adjacent side = \( \sqrt{1 + x^2} \) - The hypotenuse \( h \) is given by: \[ h = \sqrt{1^2 + \left(\sqrt{1 + x^2}\right)^2} = \sqrt{1 + (1 + x^2)} = \sqrt{2 + x^2} \] - Therefore, \( \sin(\beta) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{1}{\sqrt{2 + x^2}} \). **Hint**: Again, use the triangle relationships to find sine based on cotangent. 5. **Final Result**: - Thus, we have: \[ \sin\left(\cot^{-1}\left[\cos\left(\cot^{-1}\left(\frac{1}{x}\right)\right)\right]\right) = \frac{1}{\sqrt{2 + x^2}} \] ### Conclusion: The value of \( \sin\left(\cot^{-1}\left[\cos\left(\cot^{-1}\left(\frac{1}{x}\right)\right)\right]\right) \) is \( \frac{1}{\sqrt{2 + x^2}} \) for \( x > 0 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 66

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 69

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

sin{cot^(-1)[cos(tan^(-1)x)]}=....

sin {cot^(-1)[tan (cos^(-1)x)]=

lim_(x rarr0)sin^(-1)sin cot^(-1)((1)/(x)) is equal to -

The value of cot(sin^(-1)x) is :

cos[tan^(-1){sin(cot^(-1)x)}] is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 67-MATHEMATICS
  1. The value of sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]} is equal to (x gt0)

    Text Solution

    |

  2. The integral I=int(0)^(100pi)[tan^(-1)x]dx (where, [.] represents the ...

    Text Solution

    |

  3. Which of the following functions is injective ?

    Text Solution

    |

  4. Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k...

    Text Solution

    |

  5. The length of the major axis of the ellipse (5x-10)^2 +(5y+13)^2 = (3x...

    Text Solution

    |

  6. The quadratic equations x^2" - "6x""+""a""=""0""a n d""x^2""c x""+""...

    Text Solution

    |

  7. The 5^("th") and the 31^("th") terms of an arithmetic progression are,...

    Text Solution

    |

  8. General solution of the equation 4 cot 2 theta = cot^(2) theta - tan...

    Text Solution

    |

  9. Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

    Text Solution

    |

  10. The arithmetic mean of a set of 50 numbers is 38. If two numbers of th...

    Text Solution

    |

  11. The area bounded by y=max(x^(2), x^(4)), y=1 and the y - axis from x=...

    Text Solution

    |

  12. the solution of the differential equation dy/dx = ax + b , a!=0 repre...

    Text Solution

    |

  13. If vecm, vecn are non - parallel unit vectors and vecr is a vector whi...

    Text Solution

    |

  14. Let : P(1):3y+z+1=0 and P(2):2x-y+3z-7=0 and the equation of line AB i...

    Text Solution

    |

  15. Let A=[(cos alpha,sin alpha),(-sinalpha,cosalpha)] and matrix B is def...

    Text Solution

    |

  16. ~(pvvq)vv(~p^^q) is equivalent to

    Text Solution

    |

  17. If the area of the rhombus enclosed by the lines xpmypmn=0 be 2 square...

    Text Solution

    |

  18. The equation of a normal to the parabola y=x^(2)-6x+6 which is perpend...

    Text Solution

    |

  19. If in the expansion of (2^x+1/4^x)^n , T3/T2 = 7 and the sum of the co...

    Text Solution

    |

  20. Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

    Text Solution

    |