Home
Class 12
MATHS
The range of sin^(-1)[x^2+1/2]+cos^(-1)[...

The range of `sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2]` , where [.] denotes the greatest integer function, is `{pi/2,pi}` (b) `{pi}` (c) `{pi/2}` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(-(pi)/(2))^(2 pi)[cot^(-1)x]dx, where [.] denotes the greatest integer function.

Evaluate: int_((pi)/(2))^(2 pi)[cot^(-1)]dx, where [.] denotes the greatest integer function

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The vlaue of int_(-2)^(2) (sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [*] denotes the greatest integer function, is

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

The value of int_(-g)^(1)[x[1+cos((pi x)/(2))]+1]dx where [.] denotes greatest integer function is