Home
Class 11
MATHS
If S is the set of all real x such that ...

If S is the set of all real `x` such that `(2x-1)/(2x^3+3x^2+x)` is positive

A

`(-oo,-1)uu(-1/2,1)uu(1/2,oo)`

B

`(-10,-3)uu(-1/2,1)`

C

`(1/2,3)uu(7,oo)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((2x-1)/(2x^3+3x^2+x) > 0\), we will follow these steps: ### Step 1: Identify the inequality We need to determine when the expression \(\frac{2x-1}{2x^3 + 3x^2 + x}\) is greater than zero. ### Step 2: Factor the denominator First, we factor the denominator \(2x^3 + 3x^2 + x\): \[ 2x^3 + 3x^2 + x = x(2x^2 + 3x + 1) \] Next, we will factor \(2x^2 + 3x + 1\). We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{-3 \pm \sqrt{9 - 8}}{4} = \frac{-3 \pm 1}{4} \] This gives us the roots: \[ x = \frac{-2}{4} = -\frac{1}{2} \quad \text{and} \quad x = \frac{-4}{4} = -1 \] Thus, we can write: \[ 2x^3 + 3x^2 + x = x(2x + 1)(x + 1) \] ### Step 3: Rewrite the inequality Now we can rewrite our inequality: \[ \frac{2x-1}{x(2x + 1)(x + 1)} > 0 \] ### Step 4: Find critical points The critical points occur when the numerator or denominator is zero: 1. \(2x - 1 = 0 \Rightarrow x = \frac{1}{2}\) 2. \(x = 0\) 3. \(2x + 1 = 0 \Rightarrow x = -\frac{1}{2}\) 4. \(x + 1 = 0 \Rightarrow x = -1\) The critical points are \(x = -1, -\frac{1}{2}, 0, \frac{1}{2}\). ### Step 5: Test intervals We will test the sign of the expression in the intervals defined by these critical points: - Interval 1: \((-∞, -1)\) - Interval 2: \((-1, -\frac{1}{2})\) - Interval 3: \((- \frac{1}{2}, 0)\) - Interval 4: \((0, \frac{1}{2})\) - Interval 5: \((\frac{1}{2}, ∞)\) **Testing each interval:** 1. For \(x = -2\) in \((-∞, -1)\): \(\frac{2(-2)-1}{(-2)(2(-2)+1)(-2+1)} = \frac{-5}{-2 \cdot -3 \cdot -1} = \frac{-5}{6} < 0\) 2. For \(x = -0.75\) in \((-1, -\frac{1}{2})\): \(\frac{2(-0.75)-1}{(-0.75)(2(-0.75)+1)(-0.75+1)} = \frac{-2.5}{-0.75 \cdot -0.5 \cdot 0.25} > 0\) 3. For \(x = -0.25\) in \((- \frac{1}{2}, 0)\): \(\frac{2(-0.25)-1}{(-0.25)(2(-0.25)+1)(-0.25+1)} = \frac{-1.5}{-0.25 \cdot 0.5 \cdot 0.75} > 0\) 4. For \(x = 0.25\) in \((0, \frac{1}{2})\): \(\frac{2(0.25)-1}{(0.25)(2(0.25)+1)(0.25+1)} = \frac{-0.5}{0.25 \cdot 1.5 \cdot 1.25} < 0\) 5. For \(x = 1\) in \((\frac{1}{2}, ∞)\): \(\frac{2(1)-1}{(1)(2(1)+1)(1+1)} = \frac{1}{1 \cdot 3 \cdot 2} > 0\) ### Step 6: Combine intervals The expression is positive in the intervals: - \((-1, -\frac{1}{2})\) - \((- \frac{1}{2}, 0)\) - \((\frac{1}{2}, ∞)\) ### Final Answer Thus, the solution set \(S\) is: \[ S = (-1, -\frac{1}{2}) \cup (-\frac{1}{2}, 0) \cup (\frac{1}{2}, ∞) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos
  • LOGARITHM

    CENGAGE|Exercise Solved Examples And Exercises|180 Videos

Similar Questions

Explore conceptually related problems

If S is the set of all real 'x' such that (x^2(5-x)(1-2x))/((5x+1)(x+2)) is negative and (3x+1)/(6x^3+x^2-x) is positive, then S contains

Find all the real values of x such that (2x-1)/(2x^3+3x^2+x)gt0

Knowledge Check

  • If S is the set of all real x such that (2x-1)(x^(3)+2x^(2)+x) gt 0 , then S contains which of the following intervals :

    A
    `((-3)/(2),(1)/(2))`
    B
    `((-3)/(2),(-1)/(4))`
    C
    `((-1)/(4),(1)/(2))`
    D
    `((1)/(2),3)`
  • Let S denote the set of real numbers x such that (x+sqrt(x^(2)-1))^(3)+(x-sqrt(x^(2)-1))^(3)=2cos(3cos^(-1)x) Then S contains

    A
    one element
    B
    two elements
    C
    infinte elements
    D
    no element
  • If denote the set of all real x for which (x^(2)+x+1)^(x) lt 1 , then S =

    A
    `(1,oo)`
    B
    `(-1,oo)`
    C
    `(-oo,-1)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If S is the set of all real numbers x for which >0(2x-1)/(2x^(3)+3x^(2)+x) and P is the subset of S ,

    The set of all real numbers x such that x^(2)+2x,2x+3 and x^(2)+3x+8 are the sides of a triangle is …………

    Find the set of all s for which (2x)/(2x^(2)+5x+2) gt (1)/(x+10

    The set of all real numbers x satisfying x^(2)-|x+2|+x>0 is

    Let S be the set of all real roots of the equation, 3^(x)(3^(x)-1)+2=|3^(x)-1|+|3^(x)-2|