Home
Class 12
MATHS
int(0)^(pi//2) cosx\ e^(sinx)\ dx is equ...

`int_(0)^(pi//2) cosx\ e^(sinx)\ dx` is equal to

A

`e+1`

B

`e-1`

C

`e`

D

`-e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos x \, e^{\sin x} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Set up the substitution Let \( u = \sin x \). Then, we differentiate to find \( du \): \[ du = \cos x \, dx \] This means that \( \cos x \, dx = du \). ### Step 2: Change the limits of integration When \( x = 0 \): \[ u = \sin(0) = 0 \] When \( x = \frac{\pi}{2} \): \[ u = \sin\left(\frac{\pi}{2}\right) = 1 \] Thus, the limits of integration change from \( x: 0 \to \frac{\pi}{2} \) to \( u: 0 \to 1 \). ### Step 3: Rewrite the integral in terms of \( u \) Now we can rewrite the integral: \[ I = \int_{0}^{1} e^{u} \, du \] ### Step 4: Integrate The integral of \( e^{u} \) is simply \( e^{u} \): \[ I = \left[ e^{u} \right]_{0}^{1} = e^{1} - e^{0} \] Calculating this gives: \[ I = e - 1 \] ### Final Answer Thus, the value of the integral is: \[ I = e - 1 \]

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos x \, e^{\sin x} \, dx \), we will use a substitution method. Here are the steps: ### Step 1: Set up the substitution Let \( u = \sin x \). Then, we differentiate to find \( du \): \[ du = \cos x \, dx \] This means that \( \cos x \, dx = du \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) e^x(sinx+cosx) dx

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

Knowledge Check

  • int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

    A
    log 2
    B
    2 log 2
    C
    `(log 2)^(2)`
    D
    `1/2 log2`
  • int_2^(pi//4)(cosx-sinx) dx + int_(pi//4)^(5pi//4)(sinx-cosx) dx+ int_(2pi)^(pi//4)(cosx-sinx) dx is equal to

    A
    `sqrt2-2`
    B
    `2sqrt2-2`
    C
    `3sqrt2-2`
    D
    `4sqrt2-2`
  • int_(0)^(pi//2) abs(sinx-cosx) dx=

    A
    0
    B
    `sqrt(2) -1`
    C
    `2sqrt(2)-2`
    D
    `2sqrt(2) +2`
  • Similar Questions

    Explore conceptually related problems

    int_0^(pi//2) (cosx)/(1+sinx) dx equals to

    int_(0)^( pi/2)(cosx/(2+sinx))dx

    int_(0)^( pi/2)(cosx)/(1+sinx)dx

    int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

    Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to