Home
Class 12
MATHS
The value of int(-pi)^(pi) sin^(3) x cos...

The value of `int_(-pi)^(pi) sin^(3) x cos^(2)x dx` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\pi}^{\pi} \sin^3 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Identify the nature of the function We need to determine whether the function \( f(x) = \sin^3 x \cos^2 x \) is an odd or even function. ### Step 2: Check for odd/even function To check if \( f(x) \) is odd, we evaluate \( f(-x) \): \[ f(-x) = \sin^3(-x) \cos^2(-x) \] Using the properties of sine and cosine: \[ \sin(-x) = -\sin(x) \quad \text{and} \quad \cos(-x) = \cos(x) \] Thus, \[ f(-x) = (-\sin(x))^3 \cdot (\cos(x))^2 = -\sin^3(x) \cos^2(x) = -f(x) \] Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 3: Evaluate the integral The integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0 \] In our case, since the interval is from \( -\pi \) to \( \pi \): \[ \int_{-\pi}^{\pi} \sin^3 x \cos^2 x \, dx = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\pi}^{\pi} \sin^3 x \cos^2 x \, dx = 0 \] ---

To solve the integral \( \int_{-\pi}^{\pi} \sin^3 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Identify the nature of the function We need to determine whether the function \( f(x) = \sin^3 x \cos^2 x \) is an odd or even function. ### Step 2: Check for odd/even function To check if \( f(x) \) is odd, we evaluate \( f(-x) \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise Inverse Trigonometric Functions|55 Videos

Similar Questions

Explore conceptually related problems

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^(pi//6) (sin x) /(cos^(3)x) dx is

The value of int_(-pi//2)^(pi//2)(x^(3) + x cos x + tan^(5)x + 1)dx is

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

The value of int _(0)^(pi//2)(sin ^(2)x-cos ^(2)x)/(sin ^(3)x+cos^(3)x)dx is

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx