Home
Class 12
MATHS
Prove the following: sin^(-1)(2xsqrt(1-...

Prove the following:
`sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))`

Answer

Step by step text solution for Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ANNUAL EXAMINATION QUESTION PAPER MARCH - 2017

    SUBHASH PUBLICATION|Exercise PART -C|14 Videos
  • ANNUAL EXAMINATION QUESTION PAPER MARCH - 2017

    SUBHASH PUBLICATION|Exercise PART -D|7 Videos
  • ANNUAL EXAMINATION QUESTION PAPER MARCH - 2017

    SUBHASH PUBLICATION|Exercise PART -E|4 Videos
  • ANNUAL EXAM QUESTION PAPER 2015

    SUBHASH PUBLICATION|Exercise PART E|4 Videos

Similar Questions

Explore conceptually related problems

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove that sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))lexle1 .

Knowledge Check

  • d/dx (sin^(-1) sqrt((1-x)/2)) =

    A
    `1/(sqrt(1-x^(2))`
    B
    `(-1)/(sqrt(1-x^(2))`
    C
    `1/(2 sqrt(1-x^(2))`
    D
    `(-1)/(2sqrt(1-x^(2))`
  • Similar Questions

    Explore conceptually related problems

    Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

    Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

    Show that sin^(-1)(2xsqrt(1-x^(2))) = 2sin^(-1)x ,

    y = sin^(-1)(2xsqrt(1 - x^2)), -1/(sqrt2) lt x lt 1/(sqrt2)

    Prove the following: sin^(-1)(3x-4x^(3))=3sin^(-1)x, x epsilon[-1/2,1/2]

    Prove the following: 2tan^(-1)x=sin^(-1)((2x)/(1+x^(2))),+x+le1

    Integrate the functions (sin^(-1)x)/(sqrt(1-x^(2)))