Home
Class 12
MATHS
Investigate the behaviour of the followi...

Investigate the behaviour of the following functions for monotonicity in the given intervals.
(i) `f(x) = -sin^(3)x + 3sin ^(2)x +5, x epsilon [-pi/2, pi/2]`.
(ii)`f(x) = secx - cosec x, x epsilon (0, pi/2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To investigate the behavior of the functions for monotonicity in the given intervals, we will follow these steps: ### (i) For the function \( f(x) = -\sin^3 x + 3\sin^2 x + 5 \) in the interval \( x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \): 1. **Differentiate the function**: \[ f'(x) = \frac{d}{dx}(-\sin^3 x + 3\sin^2 x + 5) \] Using the chain rule: \[ f'(x) = -3\sin^2 x \cos x + 6\sin x \cos x \] Simplifying: \[ f'(x) = 3\sin x \cos x (2 - \sin x) \] 2. **Find critical points**: Set \( f'(x) = 0 \): \[ 3\sin x \cos x (2 - \sin x) = 0 \] This gives us: - \( \sin x = 0 \) which occurs at \( x = 0 \) - \( 2 - \sin x = 0 \) which gives \( \sin x = 2 \) (not possible since \( \sin x \) ranges from -1 to 1) 3. **Test intervals**: We will test the sign of \( f'(x) \) in the intervals \( [-\frac{\pi}{2}, 0] \) and \( [0, \frac{\pi}{2}] \): - For \( x \in [-\frac{\pi}{2}, 0] \): Choose \( x = -\frac{\pi}{4} \): \[ f'(-\frac{\pi}{4}) = 3\sin(-\frac{\pi}{4})\cos(-\frac{\pi}{4})(2 - \sin(-\frac{\pi}{4})) > 0 \] Thus, \( f'(x) > 0 \) in this interval, so \( f(x) \) is increasing. - For \( x \in [0, \frac{\pi}{2}] \): Choose \( x = \frac{\pi}{4} \): \[ f'(\frac{\pi}{4}) = 3\sin(\frac{\pi}{4})\cos(\frac{\pi}{4})(2 - \sin(\frac{\pi}{4})) > 0 \] Thus, \( f'(x) > 0 \) in this interval, so \( f(x) \) is also increasing. 4. **Conclusion**: The function \( f(x) \) is increasing on the entire interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). ### (ii) For the function \( f(x) = \sec x - \csc x \) in the interval \( x \in (0, \frac{\pi}{2}) \): 1. **Differentiate the function**: \[ f'(x) = \frac{d}{dx}(\sec x - \csc x) \] Using the derivatives of secant and cosecant: \[ f'(x) = \sec x \tan x + \csc x \cot x \] 2. **Find critical points**: Set \( f'(x) = 0 \): \[ \sec x \tan x + \csc x \cot x = 0 \] This equation does not have simple roots, so we will analyze the sign of \( f'(x) \). 3. **Test the sign of \( f'(x) \)**: Since both \( \sec x \) and \( \csc x \) are positive in the interval \( (0, \frac{\pi}{2}) \): - \( \sec x \tan x > 0 \) - \( \csc x \cot x > 0 \) Therefore, \( f'(x) > 0 \) for all \( x \in (0, \frac{\pi}{2}) \). 4. **Conclusion**: The function \( f(x) \) is increasing on the interval \( (0, \frac{\pi}{2}) \). ### Summary: - \( f(x) = -\sin^3 x + 3\sin^2 x + 5 \) is increasing on \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). - \( f(x) = \sec x - \csc x \) is increasing on \( (0, \frac{\pi}{2}) \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise SOLVED PROBLEMS (Subjective)|13 Videos
  • APPLICATION OF DERIVATIVE

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|31 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos

Similar Questions

Explore conceptually related problems

Verify Rolle's theorem for the following functions in the given intervals. f(x) = sin^(2) x in the interval [0,pi] .

Prove that the following functions are increasing for the given intervals, (i) y =e^(x) + sinx, x epsilon R^(+) (ii) y=sin x+ tan x- 2x, x epsilon(0, pi/2) (iii) y = x + sin x , x epsilon R .

Knowledge Check

  • The range of the function f(x)=1+sinx+sin^(3)x+sin^(5)x+…… when x in (-pi//2,pi//2) , is

    A
    (0,1)
    B
    R
    C
    (-2,2)
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Verify Rolle's theorem for the following functions in the given intervals. f(x) = sin 3x in the interval [0,pi] .

    Find the greatest and the least values of the following functions on the indicated intervals : f(x) =2 " sin x + sin 2 x on" [ 0,3/2pi]

    Separate the intervals of monotonocity of the function: f(x)=-sin^(3)x+3sin^(2)x+5,x in[-(pi)/(2),(pi)/(2)]

    If f(x)=2sin^(3)x-3sin^(2)x+12sin x+5AA x in(0,pi/2) then

    Verify Rolle's theorem for each of the following functions on indicated intervals; f(x)=sin^(2)x on 0<=x<=pi f(x)=sin x+cos x-1 on [0,(pi)/(2)]f(x)=sin x-sin2x on [0,pi]

    Prove that the function are increasing for the given intervals: f(x)=sec x-csc x,x in(0,(pi)/(2))

    Prove that the function are increasing for the given intervals: f(x)=sin x+tan x-2x,x in(0,(pi)/(2))