Home
Class 12
MATHS
Evaluate int(-2)^(4)x[x]dx where [.]...

Evaluate
`int_(-2)^(4)x[x]dx`
where [.] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{-2}^{4} x \lfloor x \rfloor \, dx \), where \( \lfloor x \rfloor \) denotes the greatest integer function, we first need to break the integral into segments where the greatest integer function is constant. ### Step 1: Identify the intervals The greatest integer function \( \lfloor x \rfloor \) changes its value at integer points. Therefore, we will break the integral into the following intervals: - From \(-2\) to \(-1\) - From \(-1\) to \(0\) - From \(0\) to \(1\) - From \(1\) to \(2\) - From \(2\) to \(3\) - From \(3\) to \(4\) ### Step 2: Write the integral as a sum of integrals We can express the integral as: \[ \int_{-2}^{4} x \lfloor x \rfloor \, dx = \int_{-2}^{-1} x(-2) \, dx + \int_{-1}^{0} x(-1) \, dx + \int_{0}^{1} x(0) \, dx + \int_{1}^{2} x(1) \, dx + \int_{2}^{3} x(2) \, dx + \int_{3}^{4} x(3) \, dx \] ### Step 3: Evaluate each integral 1. **For \( \int_{-2}^{-1} x(-2) \, dx \)**: \[ = -2 \int_{-2}^{-1} x \, dx = -2 \left[ \frac{x^2}{2} \right]_{-2}^{-1} = -2 \left( \frac{(-1)^2}{2} - \frac{(-2)^2}{2} \right) = -2 \left( \frac{1}{2} - 2 \right) = -2 \left( \frac{1}{2} - \frac{4}{2} \right) = -2 \left( -\frac{3}{2} \right) = 3 \] 2. **For \( \int_{-1}^{0} x(-1) \, dx \)**: \[ = -\int_{-1}^{0} x \, dx = -\left[ \frac{x^2}{2} \right]_{-1}^{0} = -\left( 0 - \frac{(-1)^2}{2} \right) = -\left( -\frac{1}{2} \right) = \frac{1}{2} \] 3. **For \( \int_{0}^{1} x(0) \, dx \)**: \[ = 0 \] 4. **For \( \int_{1}^{2} x(1) \, dx \)**: \[ = \int_{1}^{2} x \, dx = \left[ \frac{x^2}{2} \right]_{1}^{2} = \left( \frac{2^2}{2} - \frac{1^2}{2} \right) = \left( \frac{4}{2} - \frac{1}{2} \right) = \frac{3}{2} \] 5. **For \( \int_{2}^{3} x(2) \, dx \)**: \[ = 2 \int_{2}^{3} x \, dx = 2 \left[ \frac{x^2}{2} \right]_{2}^{3} = \left( 3^2 - 2^2 \right) = 9 - 4 = 5 \] 6. **For \( \int_{3}^{4} x(3) \, dx \)**: \[ = 3 \int_{3}^{4} x \, dx = 3 \left[ \frac{x^2}{2} \right]_{3}^{4} = 3 \left( \frac{4^2}{2} - \frac{3^2}{2} \right) = 3 \left( \frac{16}{2} - \frac{9}{2} \right) = 3 \left( \frac{7}{2} \right) = \frac{21}{2} \] ### Step 4: Combine all the results Now we can sum all the evaluated integrals: \[ 3 + \frac{1}{2} + 0 + \frac{3}{2} + 5 + \frac{21}{2} \] Converting everything to a common denominator (2): \[ = \frac{6}{2} + \frac{1}{2} + 0 + \frac{3}{2} + \frac{10}{2} + \frac{21}{2} = \frac{6 + 1 + 0 + 3 + 10 + 21}{2} = \frac{41}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{4} x \lfloor x \rfloor \, dx = \frac{41}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I)|13 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-II)|10 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 4:|4 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(4)x [x] dx= ( where [.] denotes greatest integer function

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

Knowledge Check

  • int_(0)^(5) [x] dx = ….., where [x] denotes the greatest integer function

    A
    10
    B
    8
    C
    6
    D
    4
  • the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

    A
    [x]
    B
    `([x])/(2)`
    C
    `x[x]`
    D
    None of these
  • int_(0)^(2)x[2x]dx , where[.] denotes greatest integer function, equals:

    A
    `540`
    B
    `544`
    C
    `14/7`
    D
    `33/4`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

    Evaluate int_(0)^(a)[x^(n)]dx, (where,[*] denotes the greatest integer function).

    Evaluate: int[(log x)/(3)]dx, where [.] denotes the greatest integer function.

    The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

    Evaluate: int_(0)^(100)x-[x]dx where [.] represents the greatest integer function).