Home
Class 12
MATHS
The value of (1)/(81^(n))-(10)/(81^(n))....

The value of `(1)/(81^(n))-(10)/(81^(n)).""^(2n)C_(2)-(10^(3))/(81^(n)).""^(2n)C_(3)+…+((10)^(2n))/(81^(n))` is

A

2

B

1

C

0

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{81^n} - \frac{10}{81^n} \binom{2n}{2} + \frac{10^3}{81^n} \binom{2n}{3} - \ldots + \frac{10^{2n}}{81^n}, \] we can recognize that this is a series that can be expressed in terms of the binomial expansion. ### Step 1: Identify the series The series can be rewritten as: \[ S = \sum_{k=0}^{2n} (-1)^k \frac{10^k}{81^n} \binom{2n}{k}. \] ### Step 2: Factor out the common term Notice that \( \frac{1}{81^n} \) is a common factor in each term of the series. We can factor it out: \[ S = \frac{1}{81^n} \sum_{k=0}^{2n} (-1)^k 10^k \binom{2n}{k}. \] ### Step 3: Recognize the binomial theorem The sum inside the parentheses is a binomial expansion. According to the binomial theorem: \[ \sum_{k=0}^{m} (-1)^k \binom{m}{k} x^k = (1 - x)^m. \] In our case, \( m = 2n \) and \( x = 10 \): \[ \sum_{k=0}^{2n} (-1)^k \binom{2n}{k} 10^k = (1 - 10)^{2n} = (-9)^{2n}. \] ### Step 4: Substitute back into the equation Now substituting this back into our expression for \( S \): \[ S = \frac{1}{81^n} \cdot (-9)^{2n}. \] ### Step 5: Simplify the expression We can simplify \( (-9)^{2n} \): \[ (-9)^{2n} = 9^{2n}. \] So we have: \[ S = \frac{9^{2n}}{81^n}. \] ### Step 6: Simplify further Since \( 81 = 9^2 \), we can rewrite \( 81^n \) as \( (9^2)^n = 9^{2n} \). Thus, \[ S = \frac{9^{2n}}{9^{2n}} = 1. \] ### Final Answer The value of the given expression is: \[ \boxed{1}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of (1)/(81^(n))-(10)/(81^(n))^(2n)C_(1)+(10^(2))/(81^(n))^(2n)C_(2)-(10^(3))/(81^(n))^(2n)C_(3)+...+(10^(2n))/(81^(n))

(1)/(n-1)-(10)/(n+2)=3

Knowledge Check

  • The value is 1/(81^n) – 10/(81^n) ^(2n)C_1 + 10^2/(81^n) ^(2n)C_2 – 10^3/(81^n) ^(2n)C_3 + cdotcdotcdot+(10^(2n))/(81^n) is

    A
    2
    B
    0
    C
    `1/2`
    D
    1
  • The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

    A
    nx
    B
    ` n(n -x)`
    C
    ` n (x-1)`
    D
    none of these
  • The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(2))/(2n)

    A
    `underset(0)overset(1)intx^(n-1)(1-x)^(n)dx`
    B
    `underset(1)overset(2)intx^(n)(x-1)^(n-1)dx`
    C
    `underset(1)overset(2)int(1+x)^(n)dx`
    D
    `underset(0)overset(1)int(1-x)^(n)x^(n-1)dx`
  • Similar Questions

    Explore conceptually related problems

    Find the value of n: (i) .^(n)C_(10)=^(n)C_(16) (ii) .^(5)C_(n) =^(15)C_(n+3) (iii) .^(10)C_(n) =^(10)C_(n+2) (iv) .^(23)C_(3n) =.^(25)C_(n+1) (v) .^(n)C_(r) =.^(n)C_(r-2)

    The value of sum (""^(n) C_(1) )^(2)+ (""^(n) C_(2) )^(2) + (""^(n) C_(3))^(2) + …+ (""^(n) C_(n) )^(2) is

    3""^(n)C_(0)+10""^(n)C_(1)+28""^(n)C_(2)+82""^(n)C_(3)+…(n+1) terms =

    The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

    The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to