Home
Class 12
MATHS
If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b...

If `|{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l)` then the value of (k, l) is

A

(2, 2)

B

(1, 2)

C

(1, 1)

D

(2, 3)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the given 3x3 matrix and express it in the form \( k(a^3 + b^3 + c^3 - 3abc)^l \). ### Step 1: Define the Matrix The given matrix is: \[ \begin{pmatrix} bc - a^2 & ac - b^2 & ab - c^2 \\ ac - b^2 & ab - c^2 & bc - a^2 \\ ab - c^2 & bc - a^2 & ac - b^2 \end{pmatrix} \] ### Step 2: Calculate the Determinant We denote the matrix as \( A \). We need to compute \( |A| \). Using properties of determinants and symmetry, we can express the determinant in terms of the variables \( a, b, c \). ### Step 3: Use the Identity We know from algebra that: \[ a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This identity can help us simplify our determinant. ### Step 4: Factor the Determinant After calculating the determinant, we find that: \[ |A| = (abc - a^2 - b^2 + ab + ac - c^2)^2 \] This can be rewritten using the identity from Step 3. ### Step 5: Compare with the Given Form We compare the result with the form \( k(a^3 + b^3 + c^3 - 3abc)^l \). From our calculations, we can see that: \[ |A| = 1 \cdot (a^3 + b^3 + c^3 - 3abc)^2 \] Thus, we identify: - \( k = 1 \) - \( l = 2 \) ### Final Answer The values of \( (k, l) \) are: \[ (k, l) = (1, 2) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

det[[bc-a^(2),ca-b^(2),ab-c^(2)ca-b^(2),ab-c^(2),bc-a^(2)ab-c^(2),bc-a^(2),ca-b^(2)]]=det[[a,b,cb,c,ac,a,b]]^(2)

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

Knowledge Check

  • If a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then the value of k is

    A
    2
    B
    1
    C
    4
    D
    3
  • What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

    A
    4 abc
    B
    `4a^(2)bc`
    C
    `4a^(2)b^(2)c^(2)`
    D
    `-4a^(2)b^(2)c^(2)`
  • If a ^(2) + b ^(2) + c ^(2) = ab + bc + ac then the value of (a+c)/(b) is

    A
    0
    B
    2
    C
    1
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    |(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

    Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

    Prove that det[[b^(2)-ab,b-c,bc-acab-a^(2),a-b,b^(2)-abbc-ac,c-a,ab-a^(2)]]=0

    If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to