Home
Class 12
MATHS
Consider (1+sin theta+sin^(2)theta)^(n)=...

Consider `(1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n)a_(r) (sin theta)^( r ), theta in R`.
`a_(n+1)+a_(n+2)+…+a_(2n-1)` equals

A

`(3^(n))/(2)`

B

`(3^(n)-a_(n))/(2)`

C

`2(3^(n)-a_(n))`

D

`3^(n)-a_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_{n+1} + a_{n+2} + \ldots + a_{2n-1} \) from the expression \( (1 + \sin \theta + \sin^2 \theta)^n = \sum_{r=0}^{2n} a_r (\sin \theta)^r \). ### Step-by-step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + \sin \theta + \sin^2 \theta)^n \). This can be expanded using the binomial theorem, which will give us coefficients \( a_r \) for each power of \( \sin \theta \). 2. **Substituting \( \sin \theta = 1 \)**: To find the total sum of coefficients, we can substitute \( \sin \theta = 1 \): \[ (1 + 1 + 1^2)^n = 3^n \] This means: \[ \sum_{r=0}^{2n} a_r = 3^n \] 3. **Using Symmetry**: The coefficients \( a_r \) have a symmetry property. Specifically, \( a_r \) for \( r \) and \( 2n - r \) will be equal due to the structure of the polynomial. This means: \[ a_r = a_{2n - r} \] 4. **Finding \( a_{n+1} + a_{n+2} + \ldots + a_{2n-1} \)**: The sum \( a_{n+1} + a_{n+2} + \ldots + a_{2n-1} \) can be expressed in terms of the total sum: \[ a_0 + a_1 + \ldots + a_{2n} = 3^n \] Since \( a_r = a_{2n - r} \), we can pair the coefficients: \[ a_0 + a_{2n} + a_1 + a_{2n-1} + \ldots + a_n \] This gives us: \[ a_0 + a_{2n} + a_1 + a_{2n-1} + a_2 + a_{2n-2} + \ldots + a_n = 3^n \] The middle term \( a_n \) is counted once, and the rest can be paired. 5. **Calculating the Required Sum**: The sum \( a_{n+1} + a_{n+2} + \ldots + a_{2n-1} \) is half of the remaining terms after excluding \( a_0, a_1, \ldots, a_n \): \[ a_{n+1} + a_{n+2} + \ldots + a_{2n-1} = \frac{3^n - a_0 - a_1 - \ldots - a_n}{2} \] Since \( a_0 = 1 \) (the constant term when \( \sin \theta = 0 \)), we can find: \[ a_0 + a_1 + \ldots + a_n = 3^n - \text{(sum of the first half)} \] 6. **Final Calculation**: After careful analysis, we find that: \[ a_{n+1} + a_{n+2} + \ldots + a_{2n-1} = \frac{3^n - 1}{2} \] ### Conclusion: Thus, the value of \( a_{n+1} + a_{n+2} + \ldots + a_{2n-1} \) equals \( \frac{3^n - 1}{2} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - V)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - VI)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - III)|3 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Consider (1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n) a_(r)(sin theta)^( r ), theta in R . The value of a_(0)+2a_(1)+3a_(2)+…+(2n+1)a_(2n) is

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then prove that a_(r)=a_(2n-r)

Knowledge Check

  • Consider (1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n)a_(r)(sin theta)^( r ), theta in R . a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-…a_(2n)^(2) is equal to

    A
    `a_(n)`
    B
    `a_(n)^(2)`
    C
    `2a_(n)^(2)`
    D
    `(a_(n))/(2)`
  • If (1+2x+x^(2))^(n)= sum_(r=0)^(2n) a_(r )x^(r ) , then a_(r )=

    A
    `(""^(n)C_(r ))^(2)`
    B
    `""^(n)C_(r )" "^(n)C_(r +1)`
    C
    `""^(2n)C_(r )`
    D
    `""^(2n)C_(r +1)`
  • Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is odd , the value of sum_(r-1)^(2) a_(2r -1) is

    A
    `(3^(n) - 1 + 2a_(n))/(2)`
    B
    `(3^(n) - 1 + 2a_(n))/(4)`
    C
    `(3^(n) + 1 + 2n_(n))/(2)`
    D
    `(3^(n) + 1 - 2a_(n))/(4)`
  • Similar Questions

    Explore conceptually related problems

    If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a_(1)-2a_(2)+3a_(3)-...-2na_(2n)=

    Let n be an odd integer.If sin n theta=sum_(r=0)^(n)b_(r)sin^(r)theta for all real theta is

    Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

    Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

    Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is