Home
Class 12
MATHS
Using matrix method, solve the system of...

Using matrix method, solve the system of equation `3x+2y-2z=3, x+2y+3z=6` and `2x-y+z=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the matrix method, we will follow these steps: ### Given Equations: 1. \( 3x + 2y - 2z = 3 \) (Equation 1) 2. \( x + 2y + 3z = 6 \) (Equation 2) 3. \( 2x - y + z = 2 \) (Equation 3) ### Step 1: Formulate the Matrices We can represent the system of equations in the form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the variable matrix, - \( B \) is the constant matrix. #### Coefficient Matrix \( A \): \[ A = \begin{bmatrix} 3 & 2 & -2 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{bmatrix} \] #### Variable Matrix \( X \): \[ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] #### Constant Matrix \( B \): \[ B = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \] ### Step 2: Find the Determinant of Matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \). \[ |A| = 3 \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} = (2)(1) - (3)(-1) = 2 + 3 = 5 \) 2. \( \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = (1)(1) - (3)(2) = 1 - 6 = -5 \) 3. \( \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (2)(2) = -1 - 4 = -5 \) Now substituting back into the determinant formula: \[ |A| = 3(5) - 2(-5) - 2(-5) = 15 + 10 + 10 = 35 \] ### Step 3: Find the Inverse of Matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \text{Adj}(A) \] To find the adjoint of \( A \), we need to calculate the cofactor matrix and then transpose it. #### Cofactor Matrix Calculation: 1. \( C_{11} = \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} = 5 \) 2. \( C_{12} = -\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 5 \) 3. \( C_{13} = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -5 \) 4. \( C_{21} = -\begin{vmatrix} 2 & -2 \\ -1 & 1 \end{vmatrix} = 2 \) 5. \( C_{22} = \begin{vmatrix} 3 & -2 \\ 2 & 1 \end{vmatrix} = 7 \) 6. \( C_{23} = -\begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = 7 \) 7. \( C_{31} = \begin{vmatrix} 2 & -2 \\ 2 & 3 \end{vmatrix} = 6 \) 8. \( C_{32} = -\begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix} = 11 \) 9. \( C_{33} = \begin{vmatrix} 3 & 2 \\ 1 & 2 \end{vmatrix} = 4 \) The cofactor matrix is: \[ C = \begin{bmatrix} 5 & 5 & -5 \\ 2 & 7 & 7 \\ 6 & 11 & 4 \end{bmatrix} \] Transposing the cofactor matrix gives us the adjoint: \[ \text{Adj}(A) = \begin{bmatrix} 5 & 2 & 6 \\ 5 & 7 & 11 \\ -5 & 7 & 4 \end{bmatrix} \] Now, we can find the inverse: \[ A^{-1} = \frac{1}{35} \begin{bmatrix} 5 & 2 & 6 \\ 5 & 7 & 11 \\ -5 & 7 & 4 \end{bmatrix} \] ### Step 4: Solve for \( X \) Now we can find \( X \) using: \[ X = A^{-1}B \] Calculating \( A^{-1}B \): \[ X = \frac{1}{35} \begin{bmatrix} 5 & 2 & 6 \\ 5 & 7 & 11 \\ -5 & 7 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \] Calculating the product: 1. First row: \( 5(3) + 2(6) + 6(2) = 15 + 12 + 12 = 39 \) 2. Second row: \( 5(3) + 7(6) + 11(2) = 15 + 42 + 22 = 79 \) 3. Third row: \( -5(3) + 7(6) + 4(2) = -15 + 42 + 8 = 35 \) Thus, \[ X = \frac{1}{35} \begin{bmatrix} 39 \\ 79 \\ 35 \end{bmatrix} = \begin{bmatrix} \frac{39}{35} \\ \frac{79}{35} \\ 1 \end{bmatrix} \] ### Final Solution The solution to the system of equations is: \[ x = \frac{39}{35}, \quad y = \frac{79}{35}, \quad z = 1 \]

To solve the system of equations using the matrix method, we will follow these steps: ### Given Equations: 1. \( 3x + 2y - 2z = 3 \) (Equation 1) 2. \( x + 2y + 3z = 6 \) (Equation 2) 3. \( 2x - y + z = 2 \) (Equation 3) ### Step 1: Formulate the Matrices ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

Using matrix method, solve the system of linear equations x-2y=10,2x-y-z=8and-2y+z=7

Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0

Using matrix method,solve the following system of linear equations.3x+4y+2z=8,2y-3z=3 and x-2y+6z=-2

Use matrix to solve the following system of equations. x+y+z=3 x+2y+3z=4 2x+3y+4z=7

Use matrix to solve the following system of equations. x+y+z=3 x+2y+3z=4 x+4y+9z=6

Use matrix method, solve the system of linear equations : x + y = 5 , y + z = 3 , x + z = 4 .

Using matrices,solve the following system of equations: x+2y-3z=6,3x+2y-2z=3,2x-y+z=2

Solve the system of equations by cramer's rule: x+y+z=3 , 2x-y+3z=4 and x+2y-z=2

Using matrices,solve the following system of equations: 4x+3y+3z=60,x+2y+3z=45 and 6x+2y+3z=70

NCERT EXEMPLAR-DETERMINANTS-Determinants
  1. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  2. If A\|(1,2,0),(-2,-1,-2),(0,-1,1)|, then find the value of A^(-1) Us...

    Text Solution

    |

  3. Using matrix method, solve the system of equation 3x+2y-2z=3, x+2y+3z=...

    Text Solution

    |

  4. If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| th...

    Text Solution

    |

  5. If a+b+c!= and |(a,b,c),(b,c,a),(c,a,b)|=0 then prove that a=b=c

    Text Solution

    |

  6. Prove that: |b c-a^2c a-b^2a b-c^2c a-b^2a b-c^2b c-a^2a b-c^2b c-a^2c...

    Text Solution

    |

  7. If x+y+z=0 , prove that |x a y b z c y c z a x b z b x c y a|=x y z|a ...

    Text Solution

    |

  8. If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

    Text Solution

    |

  9. The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

    Text Solution

    |

  10. If the area of a triangle with vertices (-3,0),(3,0) and (0,k) is 9 sq...

    Text Solution

    |

  11. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  12. The number of distinct real roots of abs((sinx, cosx, cosx),(cos x,sin...

    Text Solution

    |

  13. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  14. Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]| then find lim(t->0) f(t)...

    Text Solution

    |

  15. The maximum value of |(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)| is 1/...

    Text Solution

    |

  16. [ 28.If f(x)=|[0,x-a,x-bx+a,0,x-cx+b,x+c,0]| then,[ 1) f(a)=0, 2) f(b)...

    Text Solution

    |

  17. If A=[[2,a,-3] , [0,2,5] , [1,1,3]] then,find the value of a for which...

    Text Solution

    |

  18. If A and B are invertible matrices then which of the following is not ...

    Text Solution

    |

  19. If x , y , z are different from zero and |1+x1 1 1 1+y1 1 1 1+z|=0 the...

    Text Solution

    |

  20. Using properties of determinants, prove the following: |xx+y x+2y\...

    Text Solution

    |