Home
Class 12
MATHS
Using matrix method, solve the system of...

Using matrix method, solve the system of equation `3x+2y-2z=3, x+2y+3z=6` and `2x-y+z=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the matrix method, we will follow these steps: ### Given Equations: 1. \( 3x + 2y - 2z = 3 \) (Equation 1) 2. \( x + 2y + 3z = 6 \) (Equation 2) 3. \( 2x - y + z = 2 \) (Equation 3) ### Step 1: Formulate the Matrices We can represent the system of equations in the form \( AX = B \), where: - \( A \) is the coefficient matrix, - \( X \) is the variable matrix, - \( B \) is the constant matrix. #### Coefficient Matrix \( A \): \[ A = \begin{bmatrix} 3 & 2 & -2 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{bmatrix} \] #### Variable Matrix \( X \): \[ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] #### Constant Matrix \( B \): \[ B = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \] ### Step 2: Find the Determinant of Matrix \( A \) To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \). \[ |A| = 3 \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} = (2)(1) - (3)(-1) = 2 + 3 = 5 \) 2. \( \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = (1)(1) - (3)(2) = 1 - 6 = -5 \) 3. \( \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (2)(2) = -1 - 4 = -5 \) Now substituting back into the determinant formula: \[ |A| = 3(5) - 2(-5) - 2(-5) = 15 + 10 + 10 = 35 \] ### Step 3: Find the Inverse of Matrix \( A \) The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{|A|} \text{Adj}(A) \] To find the adjoint of \( A \), we need to calculate the cofactor matrix and then transpose it. #### Cofactor Matrix Calculation: 1. \( C_{11} = \begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix} = 5 \) 2. \( C_{12} = -\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 5 \) 3. \( C_{13} = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -5 \) 4. \( C_{21} = -\begin{vmatrix} 2 & -2 \\ -1 & 1 \end{vmatrix} = 2 \) 5. \( C_{22} = \begin{vmatrix} 3 & -2 \\ 2 & 1 \end{vmatrix} = 7 \) 6. \( C_{23} = -\begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = 7 \) 7. \( C_{31} = \begin{vmatrix} 2 & -2 \\ 2 & 3 \end{vmatrix} = 6 \) 8. \( C_{32} = -\begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix} = 11 \) 9. \( C_{33} = \begin{vmatrix} 3 & 2 \\ 1 & 2 \end{vmatrix} = 4 \) The cofactor matrix is: \[ C = \begin{bmatrix} 5 & 5 & -5 \\ 2 & 7 & 7 \\ 6 & 11 & 4 \end{bmatrix} \] Transposing the cofactor matrix gives us the adjoint: \[ \text{Adj}(A) = \begin{bmatrix} 5 & 2 & 6 \\ 5 & 7 & 11 \\ -5 & 7 & 4 \end{bmatrix} \] Now, we can find the inverse: \[ A^{-1} = \frac{1}{35} \begin{bmatrix} 5 & 2 & 6 \\ 5 & 7 & 11 \\ -5 & 7 & 4 \end{bmatrix} \] ### Step 4: Solve for \( X \) Now we can find \( X \) using: \[ X = A^{-1}B \] Calculating \( A^{-1}B \): \[ X = \frac{1}{35} \begin{bmatrix} 5 & 2 & 6 \\ 5 & 7 & 11 \\ -5 & 7 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} \] Calculating the product: 1. First row: \( 5(3) + 2(6) + 6(2) = 15 + 12 + 12 = 39 \) 2. Second row: \( 5(3) + 7(6) + 11(2) = 15 + 42 + 22 = 79 \) 3. Third row: \( -5(3) + 7(6) + 4(2) = -15 + 42 + 8 = 35 \) Thus, \[ X = \frac{1}{35} \begin{bmatrix} 39 \\ 79 \\ 35 \end{bmatrix} = \begin{bmatrix} \frac{39}{35} \\ \frac{79}{35} \\ 1 \end{bmatrix} \] ### Final Solution The solution to the system of equations is: \[ x = \frac{39}{35}, \quad y = \frac{79}{35}, \quad z = 1 \]

To solve the system of equations using the matrix method, we will follow these steps: ### Given Equations: 1. \( 3x + 2y - 2z = 3 \) (Equation 1) 2. \( x + 2y + 3z = 6 \) (Equation 2) 3. \( 2x - y + z = 2 \) (Equation 3) ### Step 1: Formulate the Matrices ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR|Exercise Continuity And Differentiability|212 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR|Exercise Differential Equations|77 Videos

Similar Questions

Explore conceptually related problems

Using matrix method, solve the system of linear equations x-2y=10,2x-y-z=8and-2y+z=7

Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0

Knowledge Check

  • The system of equations x + y + z=2, 3x – y +2z=6 and 3x + y +z=-18 has

    A
    a unique solution
    B
    no solution
    C
    infinite no. of solutions
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Using matrix method,solve the following system of linear equations.3x+4y+2z=8,2y-3z=3 and x-2y+6z=-2

    Use matrix to solve the following system of equations. x+y+z=3 x+2y+3z=4 2x+3y+4z=7

    Use matrix to solve the following system of equations. x+y+z=3 x+2y+3z=4 x+4y+9z=6

    Use matrix method, solve the system of linear equations : x + y = 5 , y + z = 3 , x + z = 4 .

    Using matrices,solve the following system of equations: x+2y-3z=6,3x+2y-2z=3,2x-y+z=2

    Solve the system of equations by cramer's rule: x+y+z=3 , 2x-y+3z=4 and x+2y-z=2

    Using matrices,solve the following system of equations: 4x+3y+3z=60,x+2y+3z=45 and 6x+2y+3z=70