Answer
Step by step text solution for Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2) by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.
|
Similar Questions
Explore conceptually related problems
Recommended Questions
- Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))...
02:15
|
Playing Now - Using first principles,prove that (d)/(dx)[(1)/(f(x))]=-(f'(x))/((f(x)...
04:50
|
Play - Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({...
05:06
|
Play - Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))...
02:15
|
Play - If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is
00:46
|
Play - प्रथम सिद्धांत से सिद्ध कीजिए कि: (d)/(dx)((1)/(f(x)))=(-f'(x))/({f(x)...
05:32
|
Play - If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=
02:29
|
Play - Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))...
03:07
|
Play - Let f: R → R be a one-one onto differentiable function, such that f(2)...
02:17
|
Play