Home
Class 9
MATHS
Rationalise the denominator of the follo...

Rationalise the denominator of the following :
`(1)/(sqrt(3)-sqrt(2)-1)" "(1)/(sqrt(2)+sqrt(3)+sqrt(10))`

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominators of the given expressions, we will follow a systematic approach. Let's break down the solution step by step. ### Part 1: Rationalizing \( \frac{1}{\sqrt{3} - \sqrt{2} - 1} \) 1. **Identify the Denominator**: The denominator is \( \sqrt{3} - \sqrt{2} - 1 \). 2. **Multiply by the Conjugate**: We will multiply the numerator and denominator by the conjugate of the first two terms, which is \( \sqrt{3} - \sqrt{2} + 1 \). \[ \frac{1}{\sqrt{3} - \sqrt{2} - 1} \cdot \frac{\sqrt{3} - \sqrt{2} + 1}{\sqrt{3} - \sqrt{2} + 1} \] 3. **Simplify the Denominator**: The denominator becomes: \[ (\sqrt{3} - \sqrt{2})^2 - 1^2 \] Expanding this: \[ = (\sqrt{3})^2 - 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2 - 1 \] \[ = 3 - 2\sqrt{6} + 2 - 1 = 4 - 2\sqrt{6} \] 4. **Simplify the Numerator**: The numerator is: \[ \sqrt{3} - \sqrt{2} + 1 \] 5. **Final Expression**: Thus, we have: \[ \frac{\sqrt{3} - \sqrt{2} + 1}{4 - 2\sqrt{6}} \] 6. **Rationalize Again**: Now, we will rationalize \( \frac{\sqrt{3} - \sqrt{2} + 1}{4 - 2\sqrt{6}} \) by multiplying by the conjugate of the denominator: \[ \frac{\sqrt{3} - \sqrt{2} + 1}{4 - 2\sqrt{6}} \cdot \frac{4 + 2\sqrt{6}}{4 + 2\sqrt{6}} \] 7. **Denominator Calculation**: The denominator becomes: \[ (4)^2 - (2\sqrt{6})^2 = 16 - 24 = -8 \] 8. **Numerator Calculation**: The numerator expands to: \[ (4)(\sqrt{3} - \sqrt{2} + 1) + (2\sqrt{6})(\sqrt{3} - \sqrt{2} + 1) \] Simplifying: \[ 4\sqrt{3} - 4\sqrt{2} + 4 + 2\sqrt{18} - 2\sqrt{12} + 2\sqrt{6} \] \[ = 4\sqrt{3} - 4\sqrt{2} + 4 + 6\sqrt{2} - 4\sqrt{3} + 2\sqrt{6} \] \[ = (4 - 4)\sqrt{3} + (6 - 4)\sqrt{2} + 4 + 2\sqrt{6} = 2\sqrt{2} + 4 + 2\sqrt{6} \] 9. **Final Result**: Therefore, the expression simplifies to: \[ \frac{2\sqrt{2} + 4 + 2\sqrt{6}}{-8} = -\frac{1}{4}(\sqrt{2} + 2 + \sqrt{6}) \] ### Part 2: Rationalizing \( \frac{1}{\sqrt{2} + \sqrt{3} + \sqrt{10}} \) 1. **Identify the Denominator**: The denominator is \( \sqrt{2} + \sqrt{3} + \sqrt{10} \). 2. **Multiply by the Conjugate**: We will multiply the numerator and denominator by the conjugate \( \sqrt{2} + \sqrt{3} - \sqrt{10} \): \[ \frac{1}{\sqrt{2} + \sqrt{3} + \sqrt{10}} \cdot \frac{\sqrt{2} + \sqrt{3} - \sqrt{10}}{\sqrt{2} + \sqrt{3} - \sqrt{10}} \] 3. **Simplify the Denominator**: The denominator becomes: \[ (\sqrt{2} + \sqrt{3})^2 - (\sqrt{10})^2 \] Expanding this: \[ = (2 + 3 + 2\sqrt{6}) - 10 = -5 + 2\sqrt{6} \] 4. **Simplify the Numerator**: The numerator is: \[ \sqrt{2} + \sqrt{3} - \sqrt{10} \] 5. **Final Expression**: Thus, we have: \[ \frac{\sqrt{2} + \sqrt{3} - \sqrt{10}}{-5 + 2\sqrt{6}} \] 6. **Rationalize Again**: Now, we will rationalize \( \frac{\sqrt{2} + \sqrt{3} - \sqrt{10}}{-5 + 2\sqrt{6}} \) by multiplying by the conjugate of the denominator: \[ \frac{\sqrt{2} + \sqrt{3} - \sqrt{10}}{-5 + 2\sqrt{6}} \cdot \frac{-5 - 2\sqrt{6}}{-5 - 2\sqrt{6}} \] 7. **Denominator Calculation**: The denominator becomes: \[ (-5)^2 - (2\sqrt{6})^2 = 25 - 24 = 1 \] 8. **Numerator Calculation**: The numerator expands to: \[ (-5)(\sqrt{2} + \sqrt{3} - \sqrt{10}) - (2\sqrt{6})(\sqrt{2} + \sqrt{3} - \sqrt{10}) \] Simplifying: \[ -5\sqrt{2} - 5\sqrt{3} + 5\sqrt{10} - 2\sqrt{12} - 2\sqrt{18} + 2\sqrt{60} \] \[ = -5\sqrt{2} - 5\sqrt{3} + 5\sqrt{10} - 4\sqrt{3} - 6\sqrt{2} + 2\sqrt{15} \] \[ = (-5 - 6)\sqrt{2} + (-5 - 4)\sqrt{3} + 5\sqrt{10} + 2\sqrt{15} \] \[ = -11\sqrt{2} - 9\sqrt{3} + 5\sqrt{10} + 2\sqrt{15} \] 9. **Final Result**: Therefore, the expression simplifies to: \[ -11\sqrt{2} - 9\sqrt{3} + 5\sqrt{10} + 2\sqrt{15} \]

To rationalize the denominators of the given expressions, we will follow a systematic approach. Let's break down the solution step by step. ### Part 1: Rationalizing \( \frac{1}{\sqrt{3} - \sqrt{2} - 1} \) 1. **Identify the Denominator**: The denominator is \( \sqrt{3} - \sqrt{2} - 1 \). 2. **Multiply by the Conjugate**: We will multiply the numerator and denominator by the conjugate of the first two terms, which is \( \sqrt{3} - \sqrt{2} + 1 \). \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Problems From NCERT/exemplar|7 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Exercise 1a|5 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Rationalize the denominator of the following: (1)/(3+sqrt(2)-3sqrt(3))

Rationalise the denominator of each of the following 3/(sqrt3+sqrt5-sqrt2)

Rationalise the denominators of the following (a) 1/(3+sqrt2) (b) 1/(sqrt7-sqrt6)

Rationalise the denominator of 1/(5+2sqrt3)

Rationalise the denominator of (1)/(sqrt(2))

Rationalise the denominator of (2)/(sqrt(3))

Rationalise the denominator of (2)/(sqrt(3))

Rationalise the denominator of each of the following (3)/(sqrt(5)) (ii) (3)/(2sqrt(5))

Rationalise the denominator of (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) .

Rationalise the denominators of the following : (i) (1)/(sqrt(7)) (ii) (1)/(sqrt(7)-sqrt(6)) (iii) (1)/(sqrt(5)+sqrt(2)) (iv) (1)/(sqrt(7)-2)