Home
Class 11
MATHS
If .^(n)C(8) = .^(n)C(2), find .^(n)C(2)...

If `.^(n)C_(8) = .^(n)C_(2)`, find `.^(n)C_(2)`.

Text Solution

AI Generated Solution

To solve the problem where \( \binom{n}{8} = \binom{n}{2} \), we will follow these steps: ### Step 1: Set up the equation Given that \( \binom{n}{8} = \binom{n}{2} \), we can use the property of combinations that states \( \binom{n}{r} = \binom{n}{n-r} \). This means that: \[ \binom{n}{8} = \binom{n}{n-8} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|11 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN|Exercise Exercise 3|11 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN|Exercise Exercise 4|29 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(8)=.^(n)C_(6) , find .^(n)C_(3) .

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

Knowledge Check

  • If ^(^^)nC_(9)=^(n)C_(8), find ^(n)C_(17)

    A
    17
    B
    1
    C
    17!
    D
    None of these
  • If ""^(n)C_(9) = ""^(n) C_(8) , then find ""^(n) C_(17) .

    A
    1
    B
    0
    C
    `-4`
    D
    None of these
  • The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

    A
    `.^(n)C_(r-n) xx 2^(2n-r)` if `r ge n`
    B
    0, if `r lt n`
    C
    `.^(n)C_(r-n) xx 2^(n-r)` if `r ge n`
    D
    `.^(-n)C_(r-n) xx 2^(2n-r)` if `r lt n`
  • Similar Questions

    Explore conceptually related problems

    (i) .^(n)C_(7)=.^(n)C_(5) , find n. (ii) If.^(n)C_(14)=.^(n)C_(16) , find .^(n)C_(28) .

    If ^(n)C_(8)=^(n)C_(6), then find ^(n)C_(2)

    If ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P., find n.

    Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

    Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" + (.^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .