Home
Class 11
MATHS
"If " C(0),C(1),C(2)………C(n) are th...

`"If " C_(0),C_(1),C_(2)………C_(n)` are the binomial coefficient in the expansion of `(1+x)^(n)` then prove that:
`C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+……..+C_(n)^(2)=(|ul2n)/(|uln|uln)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`(1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+......+C_(n).x^(n) " and " (x+1)^(n)=C_(0).x^(n)+C_(1).x^(n-1)+C_(2).x^(n-2)+......+C_(n)`
Multiple both eqs. We get .
`(1+x)^(2n)=(C_(0)+C_(1).x+C_(2).x^(2)+....+C_(n).x^(n))`
`(C_(0).x^(n)+C_(1).x^(n-1)+C_(2).x^(n-2)+....+C_(n))`
Now
`C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+....+C_(n)^(2)=` Coefficient of `x^(n)` in the expansion of `(1+x)^(2n)`
`T_(r+1)=^(2n)C_(r).(1)^(2n-r).x^(r)=^(2n)C_(r).x^(r)`
`:." Coefficient of " x^(n)=^(2n)C_(n)=(|ul2n)/(|uln|uln)`
Therefore
`C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.....+C_(n)^(2)=(|ul2n)/(|uln|uln)` Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exericse|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

" if" C_(0)C_(1)C_(2),……C_(n) are the binomial coefficients in the expansion of (1+x)^(n) then prove that: C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+……+C_(n-2)C_(n)=(|ul2n)/(|uln-2|uln+2)

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(o)C_(1),C_(2),......,C_(n) denote the binomial coefficients in the expansion of (1+x)^(n), then the value of sum_(r=0)^(n)(r+1)C_(r) is

If C_(0),C_(1),C_(2),.........,C_(n) denote the binomial coefficients in the expansion of (1+1)^(n), then sum_(0<=r

NAGEEN PRAKASHAN-BINOMIAL THEOREM-Example
  1. If (1+x)^(n)=C(0)+C(1).x+C(2).x^(2)+C(3).x^(3)+......+C(n).x^(n), then...

    Text Solution

    |

  2. If C0, C1,C2 ..., Cn, denote the binomial coefficients in the expans...

    Text Solution

    |

  3. "If " C(0),C(1),C(2)………C(n) are the binomial coefficient in the ...

    Text Solution

    |

  4. " if" C(0)C(1)C(2),……C(n) are the binomial coefficients in the exp...

    Text Solution

    |

  5. Expand (2x+y)^(5) with the help of binomial theorem

    Text Solution

    |

  6. Expand (3x-2y)^(6) with the help ob binomial theorm.

    Text Solution

    |

  7. Simplify with the help of binomial theorm.

    Text Solution

    |

  8. (iii) Find an approximate value of (0.99)^5 using the first three term...

    Text Solution

    |

  9. Using binomial theorem, prove that (101)^(50)> 100^(50)+99^(50)dot

    Text Solution

    |

  10. If number of terms in the expansion of (x -2y +3z)^n are 45, then n i...

    Text Solution

    |

  11. Prove that overset(n)underset(r=0)(Sigma^(n))C(r).4^(r)=5^(n)

    Text Solution

    |

  12. If (1-x+x^(2))^(4)=1+P(1)x+P(2)x^(2)+P(3)x^(3)+…….+P(8)x^(8), then pro...

    Text Solution

    |

  13. If o be the sum of odd terms and E that of even terms in the expansion...

    Text Solution

    |

  14. Find the 8th term in the expansion of ((2x)/(3)-(3)/(5x))^(12)

    Text Solution

    |

  15. Find the 13^(t h)term in the expansion of (9x-1/(3sqrt(x)))^(18),x!=0

    Text Solution

    |

  16. Find the 15th term in the expansion of "("sqrt(x)-sqrt(y)")"^(17)

    Text Solution

    |

  17. Find the middle term in the expansion of (3x-(1)/(2x))^(16)

    Text Solution

    |

  18. Find the middle term in the expansion of (1+2x+x^(2))^(10)

    Text Solution

    |

  19. Find the 4th term from the end in the expansion of (1-3x)^(10)

    Text Solution

    |

  20. Show that the middle term in the expansion of (1+x)^(2n)is (1. 3. 5.d...

    Text Solution

    |