Home
Class 11
MATHS
"If " C(0),C(1),C(2)………C(n) are th...

`"If " C_(0),C_(1),C_(2)………C_(n)` are the binomial coefficient in the expansion of `(1+x)^(n)` then prove that:
`C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+……..+C_(n)^(2)=(|ul2n)/(|uln|uln)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`(1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+......+C_(n).x^(n) " and " (x+1)^(n)=C_(0).x^(n)+C_(1).x^(n-1)+C_(2).x^(n-2)+......+C_(n)`
Multiple both eqs. We get .
`(1+x)^(2n)=(C_(0)+C_(1).x+C_(2).x^(2)+....+C_(n).x^(n))`
`(C_(0).x^(n)+C_(1).x^(n-1)+C_(2).x^(n-2)+....+C_(n))`
Now
`C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+....+C_(n)^(2)=` Coefficient of `x^(n)` in the expansion of `(1+x)^(2n)`
`T_(r+1)=^(2n)C_(r).(1)^(2n-r).x^(r)=^(2n)C_(r).x^(r)`
`:." Coefficient of " x^(n)=^(2n)C_(n)=(|ul2n)/(|uln|uln)`
Therefore
`C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.....+C_(n)^(2)=(|ul2n)/(|uln|uln)` Hence Proved.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exericse|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

" if" C_(0)C_(1)C_(2),……C_(n) are the binomial coefficients in the expansion of (1+x)^(n) then prove that: C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+……+C_(n-2)C_(n)=(|ul2n)/(|uln-2|uln+2)

In C_(0),C_(1)C_(2)….C_(n) are the binomial coefficients in the expansion of (1+x)^(n) then prove that : (i) C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+…..+(-1)^(n).C_(n)^(2) (ii) C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+....+C_(n-1)C_(n)

Knowledge Check

  • If C_(0), C_(1), C_(2),…,C_(n) denote the binomial coefficients in the expansion of (1+x)^(n) , then C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + … + (n+1) C_(n)^(2) equals

    A
    `(2n+1)^(2n)C_(n)`
    B
    `(2n-1) ""^(2n)C_(n)`
    C
    `((n)/(2) + 1) ""^(2n)C_(n)`
    D
    `((n)/(2) + 1) ""^(2n-1)C_(n)`
  • If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

    A
    `(2n +1)""^(2n)C_(n)`
    B
    `(2n -1)""^(2n)C_(n)`
    C
    `((n)/(2)+1) ""^(2n)C_(n)`
    D
    `((n)/(2) +1) ""^(2n-1)C_(n)`
  • If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

    A
    `(n+1)^(2)`
    B
    `(n+1) 2 ^(n+1)`
    C
    `n2^(n)`
    D
    `n2^(n+1)`
  • Similar Questions

    Explore conceptually related problems

    If C_(0),C_(1),C_(2),...C_(n) are the binomial coefficients in the expansion of (1+x)^(n) then prove that: C_(0)+(C_(1))/(2)+(C_(2))/(3)+……+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

    In C_(0),C_(1)C_(2)….C_(n) are the binomial coefficients in the expansion of (1+x)^(n) then prove that : (i) C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+…..+(-1)^(n).C_(n)^(2) (ii) C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+....+C_(n-1)C_(n)

    If C_(o)C_(1),C_(2),......,C_(n) denote the binomial coefficients in the expansion of (1+x)^(n), then the value of sum_(r=0)^(n)(r+1)C_(r) is

    If C_(0),C_(1),C_(2),.........,C_(n) denote the binomial coefficients in the expansion of (1+1)^(n), then sum_(0<=r

    If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =