Home
Class 11
MATHS
Statement 1: If f(x) is an odd function,...

Statement 1: If `f(x)` is an odd function, then `f^(prime)(x)` is an even function. Statement 2: If `f^(prime)(x)` is an even function, then `f(x)` is an odd function.

Answer

Step by step text solution for Statement 1: If f(x) is an odd function, then f^(prime)(x) is an even function. Statement 2: If f^(prime)(x) is an even function, then f(x) is an odd function. by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If f(t) is an odd function,then varphi(x)=int_(a)^(x)f(t)dt is an even function.

If f(x) is an odd function,then write whether f'(x) is even or odd.

Knowledge Check

  • If f(x) is an odd function, then the curve y=f(x) is symmetric

    A
    about x-axis
    B
    about y-axis
    C
    about both the axes
    D
    in opposite quadrants
  • Statement I The function f(x) = int_(0)^(x) sqrt(1+t^(2) dt ) is an odd function and g(x)=f'(x) is an even function , then f(x) is an odd function.

    A
    Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement 1.
    B
    Statement I is true, Statement II is also true , Statement II is not the correct explanation of Statement II.
    C
    Statement I is true, Statement II is false
    D
    Statement I is false , Statement II is true
  • Statement-1 : f(x) is a one-one function hArr f^(-1) (x) is a one-one function. and Statement-2 f^(-1)(x) is the reflection of the function f(x) with respect to y = x.

    A
    Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
    B
    Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
    C
    Statement -1 is False, Statement -2 is False
    D
    Statement -1 is False, Statement -2 is True
  • Similar Questions

    Explore conceptually related problems

    If f(x) is an even function,then write whether f'(x) is even or odd.

    Let G(x)=(1/(a^x-1)+1/2)F(x), where a is a positive real number not equal to 1 and f(x) is an odd function. Which of the following statements is true? (a)G(x) is an odd function (b)G(x)i s an even function (c)G(x) is neither even nor odd function. (d)Whether G(x) is an odd or even function depends on the value of a

    If f is an odd function and g is an even function,then fog is

    Statement -1 : Integral of an even function is not always on odd function. Statement-2: Integral of an odd function is an even function.

    Statement I Integral of an even function is not always an odd function. Statement II Integral of an odd function is an even function .