Home
Class 12
MATHS
Evaluate lim((x,y) to (1,2)), g(x,y) , i...

Evaluate `lim_((x,y) to (1,2))`, g(x,y) , if the limit exist where g(x,y) `=(3x^(2) - xy)/(x^(2) + y^(2)+ 3)`

Text Solution

Verified by Experts

The correct Answer is:
`therefore `Limit `= (3-2)/(1+ 4+2) =1/8`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.4|18 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.5|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.2|17 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Problem for practice|45 Videos
  • DISCRETE MATHEMATICS

    PREMIERS PUBLISHERS|Exercise Problems For Practice|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_((x, y) rarr (1, 2)) g(x, y) , if the limit exists, where g(x, y) = (3x^(2) - xy)/(x^(2) + y^(2) + 3) .

Evaluate lim_((x,y) to (0,0)) cos((e^(x) sin y)/y) , if the limit exists.

Knowledge Check

  • lim _((x,y) to(1,0))(x ^(2) + y ^(2))/(x - 2y ) is :

    A
    0
    B
    `-1/2`
    C
    `1`
    D
    `1/2`
  • Similar Questions

    Explore conceptually related problems

    Evaluate lim_((x, y) rarr (0, 0)) cos ((e^(x) sin y)/(y)) , if the limit exists.

    Evaluate lim_((x,y) to (0,0)) cos((x^(3) + y^(3))/(x+y+2)) . If the limit exists.

    Evaluate lim_((x, y) rarr (0, 0)) cos ((x^(3) + y^(2))/(x + y + 2)) . If the limit exists.

    Find the product of the terms. 3x^(2)y,-3xy^(3),x^(2)y^(2)

    Let g(x,y) = (x^(2)y)/(x^(4) + y^(2)) for (x,y) ne (0,0) and f(0,0)=0. (i) Show that lim_((x,y) to (0,0)) g(x,y)=0 along every line y=mx, m in R . (ii) Show that lim_((x,y) to (0,0)) g(x,y) = k/(1+k^(2)) , along every parabola y=kx^(2), k in R{0} .

    If y = 5x^(4) + 3x^(3) - 2x^(2) + 7x - 1 find y_(3) .

    Find the sum to n term the series : (x+y)+(x^(2)+xy+y^(2))+(x^(3)+x^(2)y+xy^(2)+y^(3))+…..