Home
Class 12
MATHS
If u(x,y) =x^(2)y + 3xy^(4), x = e^(t) a...

If `u(x,y) =x^(2)y + 3xy^(4), x = e^(t)` and y= sin t, find `(du)/(dx)` and evaluate it at t=0.

Text Solution

Verified by Experts

The correct Answer is:
`(dt)/(dt) = e^(0) [ 0+ 0+ 1 + 0] =1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.7|9 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.8|15 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.5|5 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Problem for practice|45 Videos
  • DISCRETE MATHEMATICS

    PREMIERS PUBLISHERS|Exercise Problems For Practice|30 Videos

Similar Questions

Explore conceptually related problems

If u(x, y) = x^(2)y + 3xy^(4), x = e^(t) and y = sin t , find (d u)/(d t) and evaluate it at t = 0.

If w(x, y) = 6x^(3) - 3xy + 2y^(2), x = e^(x) , y = cos s, s in RR , find (d w)/(d s) , and evaluate at s = 0,

Knowledge Check

  • If g(x,y) = 3x^(2) - 5y + 2y^(2), x(t) =e^(t) and y(t) = cos t , then (dg)/(dt) is equal to

    A
    `6e^(2t) + 5 sin t - 4 cos t sin t`
    B
    `6e^(2t) - 5 sin t + 4 cos t sin t`
    C
    `3e^(2t) + 5 sin t + 4 cos t sin t`
    D
    `3e^(2t) - 5 sin t + 4 cos t sin t`
  • If g(x, y) = 3x^(2) - 5y + 2y^(2), x(t) = e^(t) and y(t) = cos t , then (dg)/(d t) is equal to

    A
    `6e^(2t) + 5 sin t - 4 cos t sin t`
    B
    `6e^(2t) - 5 sin t + 4 cos t sin t`
    C
    `3e^(2t) + 5 sin t + 4 cos t sin t`
    D
    `3e^(2t) - 5 sin t + 4 cos t sin t`
  • Similar Questions

    Explore conceptually related problems

    If u(x,y,z) =xy^(2)z^(3), x= sin t, y = cos t, z=1 + e^(2t) , find (du)/(dx) .

    If w(x,y,z) =x^(2) + y^(2)+ z^(2), x=e^(t), y=e^(t) sin t and z=e^(t) cos t , find (dw)/(dt) .

    If f (x,y) =x ^(2) + xy+y ^(2),x =t ,y=t ^(2) then (df )/(dt)=

    Let g (x,y)=x^2-yx + sin (x+y), x (t) = e^(3t) , y(t) = t^2, t in R. Find (dg)/(dt) .

    If z(x,y) =x tan^(-1)(xy), x=t^(2), y=se^(t), s, t in R , Find (del z)/(del s) and (del z)/(del t) at s=t=1.

    If z(x,y) = x tan^(-1) (x,y) , x = t ^2, y = se^t, s t in R . Find (delz)/(delt) at s = t = 1 .