Home
Class 12
MATHS
Show that A' A and A A' are both symmetr...

Show that A' A and A A' are both symmetric matrices for any matrix A.

Text Solution

AI Generated Solution

To show that \( A' A \) and \( A A' \) are both symmetric matrices for any matrix \( A \), we need to prove that the transpose of each matrix is equal to the matrix itself. ### Step 1: Show that \( A' A \) is symmetric 1. **Start with the expression \( A' A \)**. - We need to take the transpose of this expression: \( (A' A)' \). 2. **Use the property of transposes**: ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Probability|107 Videos

Similar Questions

Explore conceptually related problems

A A' is always a symmetric matrix for any matrix A.

Let A and B are symmetric matrices of order 3. Statement -1 A (BA) and (AB) A are symmetric matrices. Statement-2 AB is symmetric matrix, if matrix multiplication of A with B is commutative.

Let a be square matrix. Then prove that A A^(T) and A^(T) A are symmetric matrices.

Prove that adjoint of a symmetric matrix is also a symmetric matrix.

Let A and B two symmetric matrices of order 3. Statement 1 : A(BA) and (AB)A are symmetric matrices. Statement 2 : AB is symmetric matrix if matrix multiplication of A with B is commutative.

If A and B are symmetric matrices,then ABA is (a) symmetric matric b) skew-symmetric matrix (c) diagonal matrix (d) scalar matrix

If A and B are symmetric matrices then AB-BA is a Symmetric Matrix (b) Skewl symmetric matrix Diagonal matrix (d) Null matrix

If A and B are symmetric matrices of order n(A!=B) then (A) A+B is skew symmetric (B) A+B is symmetric (C) A+B is a diagonal matrix (D) A+B is a zero matrix

If A and B are symmetrices matrices of the same order, then A B^T B A^T is a (a) skew-symmetric matrix (b) null matrix (c) symmetric matrix (d) none of these

Choose the correct answer If A,B are symmetric matrices of same order,then AB BA is a (A) Skew symmetric matrix (B) Symmetric matrix (C) Zero matrix (D) Identity matrix

NCERT EXEMPLAR-MATRICES-Matrices
  1. If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify...

    Text Solution

    |

  2. If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}], then varif...

    Text Solution

    |

  3. Show that A' A and A A' are both symmetric matrices for any matrix A.

    Text Solution

    |

  4. Let A and B be square matrices of the order 3xx3 . Is (A B)^2=A^2B^...

    Text Solution

    |

  5. Show that , if A and B are square matrices such that AB=BA, then (A+B)...

    Text Solution

    |

  6. If A=[{:(1,2),(-1,3):}]B=[{:(4,0),(1,5):}],C=[{:(2,0),(1,-2):}] a=4 an...

    Text Solution

    |

  7. If A=[{:(cos q,sin q),(-sin q, cos q):}] , then variefy that A^(2)=[{:...

    Text Solution

    |

  8. If A=[{:( 0,-x),(x,0):}].B=[{:(0,1),(1,0):}] and x^(2)=-1 , then show ...

    Text Solution

    |

  9. Verify that A^(2)=I, when A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}]

    Text Solution

    |

  10. If A is a square matrix, using mathematical induction prove that (A...

    Text Solution

    |

  11. Find inverse, by elementary row operations (if possible) , of both fo...

    Text Solution

    |

  12. If [{:(xy,4),(z+6,x+y):}]=[{:(8,w),(0,6):}], then find the values of x...

    Text Solution

    |

  13. If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C ...

    Text Solution

    |

  14. If A=[{:(3,-5),(-1,2):}] then find A^(2)-5A- 4I.

    Text Solution

    |

  15. Find the values of a,b,c and d, if 3[{:(a,b),(c,d):}]=[{:(a,6),(-1,2...

    Text Solution

    |

  16. Find the matrix A such that [{:(2,-1), (1,0),(-3,4):}]A=[{:(-1,-8,-10)...

    Text Solution

    |

  17. If A=[{:(1,2),(4,1):}] , then find A^(2)+2A+7I.

    Text Solution

    |

  18. If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A'...

    Text Solution

    |

  19. If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, the...

    Text Solution

    |

  20. If P(x)=[(cosx, sinx),(-sinx, cosx)], then show that P(x).P(y)=P(x+y)=...

    Text Solution

    |