Home
Class 10
MATHS
Find the values of k for which roots of ...

Find the values of k for which roots of the following equations are real and equal:
(i) `12x^(2)+4kx+3=0` (ii) `kx^(2)-5x+k=0`
(iii) `x^(2)+k(4x+k-1)+2=0` (iv) `x^(2)-2(5+2k)x+3(7+10k)=0`
(v) `5x^(2)-4x+2+k(4x^(2)-2x-1)=0` (vi) `(k+1)x^(2)-2(k-1)x+1=0`
(vii) `x^(2)-(3k-1)x+2k^(2)+2k-11=0` (viii) `2(k-12)x^(2)+2(k-12)x+2=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( k \) for which the roots of the given quadratic equations are real and equal, we need to set the discriminant \( D \) equal to zero. The discriminant \( D \) for a quadratic equation \( ax^2 + bx + c = 0 \) is given by: \[ D = b^2 - 4ac \] If \( D = 0 \), the roots are real and equal. Let's solve each equation step by step. ### (i) \( 12x^2 + 4kx + 3 = 0 \) 1. Identify \( a = 12 \), \( b = 4k \), \( c = 3 \). 2. Calculate the discriminant: \[ D = (4k)^2 - 4 \cdot 12 \cdot 3 \] \[ D = 16k^2 - 144 \] 3. Set the discriminant equal to zero: \[ 16k^2 - 144 = 0 \] 4. Solve for \( k^2 \): \[ 16k^2 = 144 \] \[ k^2 = \frac{144}{16} = 9 \] 5. Take the square root: \[ k = \pm 3 \] ### (ii) \( kx^2 - 5x + k = 0 \) 1. Identify \( a = k \), \( b = -5 \), \( c = k \). 2. Calculate the discriminant: \[ D = (-5)^2 - 4 \cdot k \cdot k \] \[ D = 25 - 4k^2 \] 3. Set the discriminant equal to zero: \[ 25 - 4k^2 = 0 \] 4. Solve for \( k^2 \): \[ 4k^2 = 25 \] \[ k^2 = \frac{25}{4} \] 5. Take the square root: \[ k = \pm \frac{5}{2} \] ### (iii) \( x^2 + k(4x + k - 1) + 2 = 0 \) 1. Expand the equation: \[ x^2 + (4k)x + (k^2 - k + 2) = 0 \] 2. Identify \( a = 1 \), \( b = 4k \), \( c = k^2 - k + 2 \). 3. Calculate the discriminant: \[ D = (4k)^2 - 4 \cdot 1 \cdot (k^2 - k + 2) \] \[ D = 16k^2 - 4(k^2 - k + 2) \] \[ D = 16k^2 - 4k^2 + 4 - 8 \] \[ D = 12k^2 - 4 \] 4. Set the discriminant equal to zero: \[ 12k^2 - 4 = 0 \] 5. Solve for \( k^2 \): \[ 12k^2 = 4 \] \[ k^2 = \frac{4}{12} = \frac{1}{3} \] 6. Take the square root: \[ k = \pm \frac{1}{\sqrt{3}} = \pm \frac{\sqrt{3}}{3} \] ### (iv) \( x^2 - 2(5 + 2k)x + 3(7 + 10k) = 0 \) 1. Identify \( a = 1 \), \( b = -2(5 + 2k) \), \( c = 3(7 + 10k) \). 2. Calculate the discriminant: \[ D = [-2(5 + 2k)]^2 - 4 \cdot 1 \cdot 3(7 + 10k) \] \[ D = 4(5 + 2k)^2 - 12(7 + 10k) \] \[ D = 4(25 + 20k + 4k^2) - 84 - 120k \] \[ D = 100 + 80k + 16k^2 - 84 - 120k \] \[ D = 16k^2 - 40k + 16 \] 3. Set the discriminant equal to zero: \[ 16k^2 - 40k + 16 = 0 \] 4. Solve using the quadratic formula: \[ k = \frac{-(-40) \pm \sqrt{(-40)^2 - 4 \cdot 16 \cdot 16}}{2 \cdot 16} \] \[ k = \frac{40 \pm \sqrt{1600 - 1024}}{32} \] \[ k = \frac{40 \pm \sqrt{576}}{32} \] \[ k = \frac{40 \pm 24}{32} \] \[ k = \frac{64}{32} = 2 \quad \text{or} \quad k = \frac{16}{32} = \frac{1}{2} \] ### (v) \( 5x^2 - 4x + 2 + k(4x^2 - 2x - 1) = 0 \) 1. Combine like terms: \[ (5 + 4k)x^2 + (-4 - 2k)x + (2 - k) = 0 \] 2. Identify \( a = 5 + 4k \), \( b = -4 - 2k \), \( c = 2 - k \). 3. Calculate the discriminant: \[ D = (-4 - 2k)^2 - 4(5 + 4k)(2 - k) \] \[ D = (16 + 16k + 4k^2) - 4(10 - 5k + 8k - 4k^2) \] \[ D = 16 + 16k + 4k^2 - 40 + 20k - 32k + 16k^2 \] \[ D = 20k^2 + 4k - 24 \] 4. Set the discriminant equal to zero: \[ 20k^2 + 4k - 24 = 0 \] 5. Divide by 4: \[ 5k^2 + k - 6 = 0 \] 6. Solve using the quadratic formula: \[ k = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 5 \cdot (-6)}}{2 \cdot 5} \] \[ k = \frac{-1 \pm \sqrt{1 + 120}}{10} \] \[ k = \frac{-1 \pm \sqrt{121}}{10} \] \[ k = \frac{-1 \pm 11}{10} \] \[ k = 1 \quad \text{or} \quad k = -\frac{6}{5} \] ### (vi) \( (k+1)x^2 - 2(k-1)x + 1 = 0 \) 1. Identify \( a = k + 1 \), \( b = -2(k - 1) \), \( c = 1 \). 2. Calculate the discriminant: \[ D = [-2(k - 1)]^2 - 4(k + 1)(1) \] \[ D = 4(k^2 - 2k + 1) - 4(k + 1) \] \[ D = 4k^2 - 8k + 4 - 4k - 4 \] \[ D = 4k^2 - 12k \] 3. Set the discriminant equal to zero: \[ 4k(k - 3) = 0 \] 4. Solve for \( k \): \[ k = 0 \quad \text{or} \quad k = 3 \] ### (vii) \( x^2 - (3k - 1)x + (2k^2 + 2k - 11) = 0 \) 1. Identify \( a = 1 \), \( b = -(3k - 1) \), \( c = 2k^2 + 2k - 11 \). 2. Calculate the discriminant: \[ D = (3k - 1)^2 - 4(1)(2k^2 + 2k - 11) \] \[ D = (9k^2 - 6k + 1) - (8k^2 + 8k - 44) \] \[ D = 9k^2 - 6k + 1 - 8k^2 - 8k + 44 \] \[ D = k^2 - 14k + 45 \] 3. Set the discriminant equal to zero: \[ k^2 - 14k + 45 = 0 \] 4. Solve using the quadratic formula: \[ k = \frac{14 \pm \sqrt{(-14)^2 - 4 \cdot 1 \cdot 45}}{2 \cdot 1} \] \[ k = \frac{14 \pm \sqrt{196 - 180}}{2} \] \[ k = \frac{14 \pm \sqrt{16}}{2} \] \[ k = \frac{14 \pm 4}{2} \] \[ k = 9 \quad \text{or} \quad k = 5 \] ### (viii) \( 2(k - 12)x^2 + 2(k - 12)x + 2 = 0 \) 1. Factor out \( 2 \): \[ 2[(k - 12)x^2 + (k - 12)x + 1] = 0 \] 2. Identify \( a = k - 12 \), \( b = k - 12 \), \( c = 1 \). 3. Calculate the discriminant: \[ D = (k - 12)^2 - 4(k - 12)(1) \] \[ D = (k - 12)^2 - 4(k - 12) \] \[ D = (k - 12)((k - 12) - 4) = (k - 12)(k - 16) \] 4. Set the discriminant equal to zero: \[ (k - 12)(k - 16) = 0 \] 5. Solve for \( k \): \[ k = 12 \quad \text{or} \quad k = 16 \] ### Summary of Values of \( k \): 1. \( k = \pm 3 \) 2. \( k = \pm \frac{5}{2} \) 3. \( k = \pm \frac{\sqrt{3}}{3} \) 4. \( k = 2 \) or \( k = \frac{1}{2} \) 5. \( k = 1 \) or \( k = -\frac{6}{5} \) 6. \( k = 0 \) or \( k = 3 \) 7. \( k = 9 \) or \( k = 5 \) 8. \( k = 12 \) or \( k = 16 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Exercise 4d|56 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer Questions|15 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Exercise 4b|16 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

find the value of K for which following equation has real and equal roots x^(2)-2(k+1)x+k^(2)=0

Find the values of k for which the following equation has equal rots: (k-12)x^(2)+2(k-12)x+2=0

Find the value(s) of k for which the given quadratic equations has real and distinct roots : (i) 2x^(2)+kx+4=0 (ii) 4x^(2)-3kx+1=0 (iii) kx^(2)+6x+1=0 (iv) x^(2)-kx+9=0

Find the values of k for which the roots are real and equal in the following equations: 3x^(2)-5x+2k=0 (ii) 4x^(2)+kx+9=0

Find the value of k for which the equation x^(2)+k(2x+k-1)+2=0 has real and equal roots.

Find the values of k for which the roots are real and equal in the following equations: (k+1)x^(2)-2(k-1)x+1=0( ii )2x^(2)+kx+3=0

Find the values of k for which the given quadratic equation has real and distinct roots: (i) kx^(2)+6x+1=0" "(ii)" "x^(2)-kx+9=0 (iii) 9x^(2)+3kx+4=0" "(iv)" "5x^(2)-kx+1=0

Find the values of k for which the roots are real and equal in the following equations: (3k+1)x^(2)+2(k+1)x+k=0 (ii) kx^(2)+kx+1=-4x^(2)-x

Find the values of k for which the roots are real and equal in the following equations: 4x^(2)-3kx+1=0( ii) x^(2)-2(5+2k)x+3(7+10k)=0

Find the values of k for which the roots are real and equal in the following equations: (k+1)x^(2)+2(k+3)x+(k+8)=0( ii) x^(2)-2kx+7k-12=0