Home
Class 12
MATHS
Find the principal values of the foll...

Find the principal values of the following :
(i) `sin^(-1)(sqrt(3))`
(ii) `cot^(-1)(-sqrt(3))`
(iii) `cos^(-1)(-1(1)/(2))`
(iv) `sec^(-1)(-(2)/sqrt(3))`
(v) `tan^(-1)(-1)`
(vi) `cosec ^(-1)(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal values of the given inverse trigonometric functions, we will follow the standard ranges for each function. Let's solve each part step by step. ### (i) Find `sin^(-1)(sqrt(3))` 1. **Identify the value**: We need to find the angle whose sine is `sqrt(3)/2`. 2. **Determine the angle**: The angle that satisfies this condition is `π/3` (or 60 degrees). 3. **Principal value**: Since `sqrt(3)` is positive, the principal value is: \[ \sin^{-1}(\sqrt{3}/2) = \frac{\pi}{3} \] ### (ii) Find `cot^(-1)(-sqrt(3))` 1. **Identify the value**: We need to find the angle whose cotangent is `-sqrt(3)`. 2. **Determine the angle**: The angle that satisfies this condition is `5π/6` (or 150 degrees), since cotangent is negative in the second quadrant. 3. **Principal value**: Thus, the principal value is: \[ \cot^{-1}(-\sqrt{3}) = \frac{5\pi}{6} \] ### (iii) Find `cos^(-1)(-1/2)` 1. **Identify the value**: We need to find the angle whose cosine is `-1/2`. 2. **Determine the angle**: The angle that satisfies this condition is `2π/3` (or 120 degrees), since cosine is negative in the second quadrant. 3. **Principal value**: Therefore, the principal value is: \[ \cos^{-1}(-\frac{1}{2}) = \frac{2\pi}{3} \] ### (iv) Find `sec^(-1)(-2/sqrt(3))` 1. **Identify the value**: We need to find the angle whose secant is `-2/sqrt(3)`. 2. **Determine the angle**: The corresponding angle is `5π/6` (or 150 degrees), since secant is negative in the second quadrant. 3. **Principal value**: Thus, the principal value is: \[ \sec^{-1}\left(-\frac{2}{\sqrt{3}}\right) = \frac{5\pi}{6} \] ### (v) Find `tan^(-1)(-1)` 1. **Identify the value**: We need to find the angle whose tangent is `-1`. 2. **Determine the angle**: The angle that satisfies this condition is `-π/4` (or -45 degrees), but we need the principal value in the range of `(-π/2, π/2)`, which is `3π/4`. 3. **Principal value**: Therefore, the principal value is: \[ \tan^{-1}(-1) = -\frac{\pi}{4} \] ### (vi) Find `cosec^(-1)(-1)` 1. **Identify the value**: We need to find the angle whose cosecant is `-1`. 2. **Determine the angle**: The angle that satisfies this condition is `-π/2` (or -90 degrees), but we need the principal value in the range of `(-π/2, π/2)`. 3. **Principal value**: Thus, the principal value is: \[ \csc^{-1}(-1) = -\frac{\pi}{2} \] ### Summary of Principal Values 1. \( \sin^{-1}(\sqrt{3}/2) = \frac{\pi}{3} \) 2. \( \cot^{-1}(-\sqrt{3}) = \frac{5\pi}{6} \) 3. \( \cos^{-1}(-1/2) = \frac{2\pi}{3} \) 4. \( \sec^{-1}(-2/\sqrt{3}) = \frac{5\pi}{6} \) 5. \( \tan^{-1}(-1) = -\frac{\pi}{4} \) 6. \( \csc^{-1}(-1) = -\frac{\pi}{2} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2b|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2c|10 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise (prove That )|9 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

Find the principal values of the following : (i) sin ^(-1) ((-sqrt(3))/(2)) (ii) cot^(-1)sqrt(-3) (iii) cos^(-1)(-(1)/(2)) (iv) cosec^(-1)(sqrt(2)) (v) tan^(-1) (vi) cosec^(-1)(-1)

Find the principal values of each of the following: cot^(-1)(-sqrt(3)) (ii) cot^(-1)(sqrt(3))

Find the principal value of each of the following: i) cot^(-1)(-sqrt(3)) ii) sec^(-1)(-sqrt(2)) iii) "cosec"^(-1)(-1) .

Find the principal value of the following: (i) cosec^(-1)(2) (ii) tan^(-1) (-sqrt3) (iii) cos^(-1) (-(1)/(sqrt2))

Find the principal value of the following (i) sin^(-1).(1)/(2) (ii) tan ^(-1).(1)/sqrt(3) (iii) cot ^(-1)(-sqrt3)

Find the principal value of each of the following: tan^(-1)((1)/(sqrt(3)))( (ii) tan^(-1)(-(1)/(sqrt(3)))

Find the principal value of each of the following: i) sin^(-1)(1/sqrt(2)) ii) cos^(-1)(sqrt(3))/2 iii) tan^(-1)(sqrt(3)) iv) "cosec"^(-1)(2)

Find the principal value of each of the following: i) cos^(-1)(-1/sqrt(2)) , ii) cos^(-1)(-1/2) , iii) cot^(-1)(-1/sqrt(3))

Find the principal value of each of the following : cos^(-1)(-(sqrt(3))/(2))( ii) cos^(-1)(-(1)/(sqrt(2)))

Find the principal values of the following: sin^(-1)(-1/2) and tan^(-1)(-sqrt(3))