Home
Class 12
MATHS
The domain of the fuction f(x)=2sin^(-1)...

The domain of the fuction `f(x)=2sin^(-1){log_(2)((1)/(2)x^(2))}` is

A

`[-2, -1]uu(1,2]`

B

`(-2, -1]uu[1,2]`

C

`[-2, -1]uu[1,2]`

D

`(-2,-1)uu(1,2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = 2 \sin^{-1} \left( \log_2 \left( \frac{1}{2} x^2 \right) \right) \), we need to ensure that both the logarithmic function and the inverse sine function are defined. ### Step 1: Determine the condition for the logarithmic function The logarithmic function \( \log_2 \left( \frac{1}{2} x^2 \right) \) is defined when its argument is greater than zero: \[ \frac{1}{2} x^2 > 0 \] Since \( \frac{1}{2} \) is positive, we only need to consider \( x^2 > 0 \). This is true for all \( x \) except \( x = 0 \). Thus, \( x \) must be any real number except zero: \[ x \in \mathbb{R} \setminus \{0\} \] ### Step 2: Determine the condition for the inverse sine function The function \( \sin^{-1}(y) \) is defined for \( y \) in the interval \([-1, 1]\). Therefore, we need: \[ -1 \leq \log_2 \left( \frac{1}{2} x^2 \right) \leq 1 \] ### Step 3: Solve the inequalities We will break this into two inequalities. #### Inequality 1: \( \log_2 \left( \frac{1}{2} x^2 \right) \geq -1 \) Taking the anti-logarithm: \[ \frac{1}{2} x^2 \geq 2^{-1} \implies \frac{1}{2} x^2 \geq \frac{1}{2} \] Multiplying both sides by 2: \[ x^2 \geq 1 \] This implies: \[ x \leq -1 \quad \text{or} \quad x \geq 1 \] #### Inequality 2: \( \log_2 \left( \frac{1}{2} x^2 \right) \leq 1 \) Taking the anti-logarithm: \[ \frac{1}{2} x^2 \leq 2^1 \implies \frac{1}{2} x^2 \leq 2 \] Multiplying both sides by 2: \[ x^2 \leq 4 \] This implies: \[ -2 \leq x \leq 2 \] ### Step 4: Combine the results Now we combine the results from both inequalities: 1. From \( x^2 \geq 1 \): \( x \leq -1 \) or \( x \geq 1 \) 2. From \( x^2 \leq 4 \): \( -2 \leq x \leq 2 \) The intersection of these two conditions gives us: - For \( x \leq -1 \): the valid range is \( -2 \leq x \leq -1 \) - For \( x \geq 1 \): the valid range is \( 1 \leq x \leq 2 \) Thus, the domain of the function \( f(x) \) is: \[ x \in [-2, -1] \cup [1, 2] \] ### Final Answer The domain of the function \( f(x) \) is: \[ [-2, -1] \cup [1, 2] \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 77

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sin^(-1){log_(2)(x^(2))/(2)} is given by _(-)

The domain of the function f(x)=cos^(-1)[log_(2)(x/2)] is

Knowledge Check

  • The domain of the function f (x) = sin^(-1) { log _(2) ((1)/(2) x ^(2)) } is

    A
    `[-2, 1) uu [1,2]`
    B
    `(-2, 1] uu[1,2]`
    C
    `[-2,-1]uu [1,2]`
    D
    `(-2,-1)uu (1,2)`
  • The domain of the function f(x)=sqrt(sin^(-1)(log_(2)x)) is

    A
    `(1,2)`
    B
    `[1,2)`
    C
    `(1,2]`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    The domain of the function f(x)=sin^(-1)("log"_(2)(x^(2))/(2)) is given by…

    The number of integers in the domain of the function f(x)=sin^(-1)(log_(2)((x^(2))/(2)))

    The domain of the function sin^(-1)(log_(2)((x)/(3))) is-

    Find the domain of the function : f(x)=sin^(-1)(log_(2)x)

    The domain of the function f(x)=sqrt(log_(2)((1)/(log_(2)x))) is given by

    The domain of the function:- f(x)=(sin^(-1))(1)/(|x^(2)-1|)