Home
Class 12
MATHS
If z(i) (where i=1, 2,………………..6) be the ...

If `z_(i)` (where `i=1, 2,………………..6`) be the roots of the equation `z^(6)+z^(4)-2=0`, then `Sigma_(i=1)^(6)|z_(i)|^(4)` is equal to

A

4

B

6

C

8

D

10

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 89

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 91

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3) andz_(4) are the roots of the equation z^(4)=1, the value of sum_(i=1)^(4)zi^(3) is

If z_(1),z_(2),z_(3),z_(4) are the roots of equation z^(4)+z^(3)+z^(2)+z+1=0, then prod_(i=1)^(4)(z_(i)+2)

Knowledge Check

  • If z=i^("ii") where i=sqrt(-1) , then |z| is equal to :

    A
    1
    B
    `e^(-pi//2)`
    C
    `e^(-pi)`
    D
    None of these
  • If z = (4)/(1 - i) then bar(z) is equal to

    A
    (1 - i)
    B
    `(1 +i)/(4)`
    C
    `(4)/(1+i)`
    D
    `(2)/(1-i)`
  • Let z_(1) = 3 + 4i and z_(2) = - 1 + 2i " then " | z_(1) + z_(2)|^(2) - 2 (| z_(1)|^(2) + | z_(2)|^(2)) is equal to

    A
    `| z_(1) - z_(2)|^(2)`
    B
    ` - | z_(1) - z_(2)|^(2)`
    C
    `| z_(1) + z_(2)|^(2)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If z_(1),z_(2),z_(3) are any three roots of the equation z^(6)=(z+1)^(6), then arg((z_(1)-z_(3))/(z_(2)-z_(3))) can be equal to

    The roots of the equation i^(4)Z^(4)+i^(3)Z^(3)++i^(2)Z^(2)+iZ+1=Z^(2) lie on

    The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

    If z_(1),z_(2),z_(3),z_(4) are the roots of the equation z^(4)+z^(3)+z^(2)+z+1=0, then the least value of [|z_(1)+z_(2)|]+1 is (where [.] is GIF.)

    If (1-i) is a root of the equation z^(3)-2(2-i)z^(2)+(4-5i)z-1+3i=0 then find the other two roots.