Home
Class 12
MATHS
Consider a matrix A=[(0,1,2),(0,-3,0),(1...

Consider a matrix `A=[(0,1,2),(0,-3,0),(1,1,1)].` If `6A^(-1)=aA^(2)+bA+cI`, where `a, b, c in and I` is an identity matrix, then `a+2b+3c` is equal to

A

10

B

`-10`

C

8

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \), \( b \), and \( c \) such that the equation \( 6A^{-1} = aA^2 + bA + cI \) holds true, where \( A \) is the given matrix and \( I \) is the identity matrix. ### Step 1: Define the matrix \( A \) and the identity matrix \( I \) Given: \[ A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & -3 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Find the characteristic polynomial of \( A \) To find the characteristic polynomial, we compute the determinant of \( A - \lambda I \): \[ A - \lambda I = \begin{pmatrix} -\lambda & 1 & 2 \\ 0 & -3 - \lambda & 0 \\ 1 & 1 & 1 - \lambda \end{pmatrix} \] The determinant is calculated as follows: \[ \text{det}(A - \lambda I) = -\lambda \cdot \text{det} \begin{pmatrix} -3 - \lambda & 0 \\ 1 & 1 - \lambda \end{pmatrix} = -\lambda \left((-3 - \lambda)(1 - \lambda) - 0\right) \] \[ = -\lambda \left(-3 - \lambda + 3\lambda + \lambda^2\right) = -\lambda \left(\lambda^2 + 2\lambda - 3\right) \] Setting the determinant to zero gives us the characteristic equation: \[ -\lambda(\lambda^2 + 2\lambda - 3) = 0 \] ### Step 3: Solve the characteristic equation The roots of the characteristic polynomial are found by solving: \[ \lambda^2 + 2\lambda - 3 = 0 \] Factoring gives: \[ (\lambda + 3)(\lambda - 1) = 0 \] Thus, the eigenvalues are \( \lambda = -3 \) and \( \lambda = 1 \). ### Step 4: Use the Cayley-Hamilton theorem According to the Cayley-Hamilton theorem, \( A \) satisfies its own characteristic equation: \[ A^3 + 2A^2 - 3I = 0 \] Rearranging gives: \[ A^3 + 2A^2 = 3I \] ### Step 5: Multiply by \( A^{-1} \) Multiplying the entire equation by \( A^{-1} \): \[ A^2 + 2A = 3A^{-1} \] Thus, we can express \( 6A^{-1} \) as: \[ 6A^{-1} = 2A^2 + 4A \] ### Step 6: Identify coefficients \( a \), \( b \), and \( c \) From the equation \( 6A^{-1} = aA^2 + bA + cI \), we can see that: - \( a = 2 \) - \( b = 4 \) - \( c = 0 \) ### Step 7: Calculate \( a + 2b + 3c \) Now, we compute: \[ a + 2b + 3c = 2 + 2(4) + 3(0) = 2 + 8 + 0 = 10 \] ### Final Answer Thus, the value of \( a + 2b + 3c \) is: \[ \boxed{10} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 90

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 92

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If matrix A=[(0,1,-1),(4,-3,4),(3,-3,4)]=B+C , where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C.

Consider the matrix B= [[0,-1],[1,0]] ,then B^(1027)

Knowledge Check

  • If A=[(x,1),(1,0)] and A^(2) is the identity matrix, then x is equal to

    A
    `-1`
    B
    `0`
    C
    `1`
    D
    `2`
  • If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

    A
    `(-6, -11)`
    B
    `(-6, 11)`
    C
    `(6, -11)`
    D
    `(6, 11)`
  • Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

    A
    2
    B
    `(3)/(7)`
    C
    `(10)/(3)`
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.

    Let A = ((1,-1,0),(0,1,-1),(0,0,1))andB=7A^(20)-20A^(7)+2I, where I is an identity matrix of order 3 xx 3 if B = [b_(ij)] then b_(13) is equal to __________ .

    If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying the equation A A^T=9I , where I is 3xx3 identity matrix, then the ordered pair (a,b) is equal to : (A) (2,-1) (B) (-2,1) (C) (2, 1) (D) (-2,-1)

    If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=(A+I) , where I is 3xx3 unit matrix.

    If A=[(1, 0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2)+2A^(4)+4A^(6) is equal to