Home
Class 12
MATHS
let f: A to A, where A is a set of non-n...

let f: A `to` A, where A is a set of non-negative integers and satisfying the condition.
(i) `x-f(x)=19[x//19]-90[f(x)//90],AAxinA`
(ii) `1900ltf(1990)lt2000`
then f(1990) equals, (where [.] denote greatest integer function)

A

1994

B

1900

C

1904

D

1890

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(1990) \) given the conditions. Let's break it down step by step. ### Step 1: Understand the given conditions We have two conditions: 1. \( x - f(x) = 19 \left\lfloor \frac{x}{19} \right\rfloor - 90 \left\lfloor \frac{f(x)}{90} \right\rfloor \) for all \( x \in A \) 2. \( 1900 < f(1990) < 2000 \) ### Step 2: Substitute \( x = 1990 \) into the first condition Using the first condition, we substitute \( x = 1990 \): \[ 1990 - f(1990) = 19 \left\lfloor \frac{1990}{19} \right\rfloor - 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] ### Step 3: Calculate \( \left\lfloor \frac{1990}{19} \right\rfloor \) Calculating \( \frac{1990}{19} \): \[ \frac{1990}{19} \approx 104.7368 \implies \left\lfloor \frac{1990}{19} \right\rfloor = 104 \] ### Step 4: Substitute back into the equation Now substituting back into the equation: \[ 1990 - f(1990) = 19 \times 104 - 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] Calculating \( 19 \times 104 \): \[ 19 \times 104 = 1976 \] So we have: \[ 1990 - f(1990) = 1976 - 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] ### Step 5: Rearranging the equation Rearranging gives: \[ f(1990) = 1990 - 1976 + 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] This simplifies to: \[ f(1990) = 14 + 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] ### Step 6: Define \( f(1990) \) Let \( f(1990) = 14 + 90k \) where \( k = \left\lfloor \frac{f(1990)}{90} \right\rfloor \). ### Step 7: Apply the second condition From the second condition, we know: \[ 1900 < f(1990) < 2000 \] Substituting \( f(1990) \): \[ 1900 < 14 + 90k < 2000 \] ### Step 8: Solve the inequalities 1. For the left side: \[ 1900 < 14 + 90k \implies 1886 < 90k \implies k > \frac{1886}{90} \approx 20.96 \implies k \geq 21 \] 2. For the right side: \[ 14 + 90k < 2000 \implies 90k < 1986 \implies k < \frac{1986}{90} \approx 22.07 \implies k \leq 22 \] ### Step 9: Determine possible values for \( k \) From the inequalities, \( k \) can only be \( 21 \) or \( 22 \). ### Step 10: Calculate \( f(1990) \) 1. If \( k = 21 \): \[ f(1990) = 14 + 90 \times 21 = 14 + 1890 = 1904 \] 2. If \( k = 22 \): \[ f(1990) = 14 + 90 \times 22 = 14 + 1980 = 1994 \] ### Step 11: Verify the values Both values \( 1904 \) and \( 1994 \) satisfy \( 1900 < f(1990) < 2000 \). ### Conclusion The possible values for \( f(1990) \) are \( 1904 \) and \( 1994 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise MATCH THE COLUMNS|6 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=2[x]+cos x, then f:R rarr R is: (where [] denotes greatest integer function)

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

If f(x)=[|x|, then int_(0)^(100)f(x)dx is equal to (where I.] denotes the greatest integer function)

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Period of f(x)=sgn([x]+[-x]) is equal to (where [.] denotes greatest integer function

FIITJEE-FUNCTION-ASSIGNMENT PROBLEMS (OBJECTIVE) Level-II
  1. let f: A to A, where A is a set of non-negative integers and satisfyin...

    Text Solution

    |

  2. Let f(x) be a linear function which maps [-1, 1] onto [0, 2], then f(x...

    Text Solution

    |

  3. Let f(x)=sinx+ax+b.Then which of the following is/are true?

    Text Solution

    |

  4. The function f(x)=|x-1|/x^2 is

    Text Solution

    |

  5. Let f(x)=sin((pi)/x) and D={x:f(x)gt0), then D contains

    Text Solution

    |

  6. The function g, defined by g(x) = sinalpha + cosalpha - 1, alpha = sin...

    Text Solution

    |

  7. The graph of the equation y + abs(y) - x - absx = 0 is represented by ...

    Text Solution

    |

  8. if f(g(x)) is one-one function, then (1) g(x) must be one- one (2) f(x...

    Text Solution

    |

  9. Let functions f,g:RtoR defined by f(x)=3x-1+abs(2x-1),g(x)=1/5(3x+5-ab...

    Text Solution

    |

  10. If f: R to R, defined as f(x)=(sin([x]pi))/(x^(2)+x+1), where (x] is t...

    Text Solution

    |

  11. Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

    Text Solution

    |

  12. If f(x) = sinx + cos ax is a periodic function then a cannot be

    Text Solution

    |

  13. If [x] represents the greatest integer less than or equal to x, then w...

    Text Solution

    |

  14. If thetain[-(pi)/9,-(pi)/(36)] such that f(theta)=tan(theta+(5pi)/(18)...

    Text Solution

    |

  15. f:Nto[-sqrt2,sqrt2]:f(x)=sinx+cosx, then f(x) is

    Text Solution

    |

  16. Let f be a real valued periodic function defined for all real umbers x...

    Text Solution

    |

  17. If f(x) is a polynomial of degree 4 with rational coefficients a...

    Text Solution

    |

  18. Let f(x) = ((x - gamma)(x - delta)) / ((x-alpha)(a-beta)) where, gamma...

    Text Solution

    |

  19. Let f(x) =x^(13)-2x^(12)+3x^(11)+…+13x+14 and alpha=cos(2pi)/15+sin(2p...

    Text Solution

    |

  20. Let y = 2cos(sin^(2)theta + sintheta + 2). If range of y is [a, b] and...

    Text Solution

    |