Home
Class 12
MATHS
let f: A to A, where A is a set of non-n...

let f: A `to` A, where A is a set of non-negative integers and satisfying the condition.
(i) `x-f(x)=19[x//19]-90[f(x)//90],AAxinA`
(ii) `1900ltf(1990)lt2000`
then f(1990) equals, (where [.] denote greatest integer function)

A

1994

B

1900

C

1904

D

1890

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(1990) \) given the conditions. Let's break it down step by step. ### Step 1: Understand the given conditions We have two conditions: 1. \( x - f(x) = 19 \left\lfloor \frac{x}{19} \right\rfloor - 90 \left\lfloor \frac{f(x)}{90} \right\rfloor \) for all \( x \in A \) 2. \( 1900 < f(1990) < 2000 \) ### Step 2: Substitute \( x = 1990 \) into the first condition Using the first condition, we substitute \( x = 1990 \): \[ 1990 - f(1990) = 19 \left\lfloor \frac{1990}{19} \right\rfloor - 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] ### Step 3: Calculate \( \left\lfloor \frac{1990}{19} \right\rfloor \) Calculating \( \frac{1990}{19} \): \[ \frac{1990}{19} \approx 104.7368 \implies \left\lfloor \frac{1990}{19} \right\rfloor = 104 \] ### Step 4: Substitute back into the equation Now substituting back into the equation: \[ 1990 - f(1990) = 19 \times 104 - 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] Calculating \( 19 \times 104 \): \[ 19 \times 104 = 1976 \] So we have: \[ 1990 - f(1990) = 1976 - 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] ### Step 5: Rearranging the equation Rearranging gives: \[ f(1990) = 1990 - 1976 + 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] This simplifies to: \[ f(1990) = 14 + 90 \left\lfloor \frac{f(1990)}{90} \right\rfloor \] ### Step 6: Define \( f(1990) \) Let \( f(1990) = 14 + 90k \) where \( k = \left\lfloor \frac{f(1990)}{90} \right\rfloor \). ### Step 7: Apply the second condition From the second condition, we know: \[ 1900 < f(1990) < 2000 \] Substituting \( f(1990) \): \[ 1900 < 14 + 90k < 2000 \] ### Step 8: Solve the inequalities 1. For the left side: \[ 1900 < 14 + 90k \implies 1886 < 90k \implies k > \frac{1886}{90} \approx 20.96 \implies k \geq 21 \] 2. For the right side: \[ 14 + 90k < 2000 \implies 90k < 1986 \implies k < \frac{1986}{90} \approx 22.07 \implies k \leq 22 \] ### Step 9: Determine possible values for \( k \) From the inequalities, \( k \) can only be \( 21 \) or \( 22 \). ### Step 10: Calculate \( f(1990) \) 1. If \( k = 21 \): \[ f(1990) = 14 + 90 \times 21 = 14 + 1890 = 1904 \] 2. If \( k = 22 \): \[ f(1990) = 14 + 90 \times 22 = 14 + 1980 = 1994 \] ### Step 11: Verify the values Both values \( 1904 \) and \( 1994 \) satisfy \( 1900 < f(1990) < 2000 \). ### Conclusion The possible values for \( f(1990) \) are \( 1904 \) and \( 1994 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • FUNCTION

    FIITJEE|Exercise MATCH THE COLUMNS|6 Videos
  • FUNCTION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level-I|47 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • HEIGHTS & DISTANCE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|20 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Knowledge Check

  • If f(x)=[x sinpix], (where [.] denotes the greatest integer function) then f(x) is

    A
    continuous at x= 0
    B
    continuous in `(-1,0)`
    C
    differentiable at x = 1
    D
    differentiable in `(-1, 1)`.
  • Let f(x) =1/[sin x] then (where [*] denotes the greatest integer function)

    A
    domain of `f(x)` is `(2npi + pi, 2npi + 2pi) cup {2npi + pi//2}`
    B
    f(x) is continous when `x in (2npi + pi, 2npi + 2pi)`
    C
    `f(x)` is continous at `x=2npi +pi//2`
    D
    `f(x)` has period `2pi`
  • If f(x) = 2[x] + cosx , then f : R to R is (where [ * ] denotes greatest integer function)

    A
    one–one and onto
    B
    one–one and into
    C
    many–one and into
    D
    many–one and onto
  • Similar Questions

    Explore conceptually related problems

    If f(x)=2[x]+cos x, then f:R rarr R is: (where [] denotes greatest integer function)

    Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

    If f(x)=[|x|, then int_(0)^(100)f(x)dx is equal to (where I.] denotes the greatest integer function)

    The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

    Period of f(x)=sgn([x]+[-x]) is equal to (where [.] denotes greatest integer function