Home
Class 12
MATHS
Evaluate : int(dx)/(1-sin^2x)...

Evaluate : `int(dx)/(1-sin^2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{dx}{1 - \sin^2 x} \), we can follow these steps: ### Step 1: Rewrite the Denominator We start with the integral: \[ \int \frac{dx}{1 - \sin^2 x} \] Using the Pythagorean identity, we know that: \[ \cos^2 x + \sin^2 x = 1 \implies 1 - \sin^2 x = \cos^2 x \] So we can rewrite the integral as: \[ \int \frac{dx}{\cos^2 x} \] ### Step 2: Simplify the Integral The expression \( \frac{1}{\cos^2 x} \) can be rewritten using the secant function: \[ \frac{1}{\cos^2 x} = \sec^2 x \] Thus, our integral now becomes: \[ \int \sec^2 x \, dx \] ### Step 3: Integrate The integral of \( \sec^2 x \) is a standard integral: \[ \int \sec^2 x \, dx = \tan x + C \] where \( C \) is the constant of integration. ### Final Answer Putting it all together, we find: \[ \int \frac{dx}{1 - \sin^2 x} = \tan x + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|8 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section C|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(dx)/((1+5sin^(2)x)) .

Evaluate: int(dx)/((1+sin x)^((1)/(2)))

Evaluate : int(sinx)/(sin 2x)dx

Evaluate: int(1)/(1-2sin x)dx

Evaluate: int(1)/(1-2sin x)dx

Evaluate: int(1)/(1-2sin x)dx

Evaluate: int(1)/(1-2sin x)dx

Evaluate int(1)/(1-sin x)dx

Evaluate : (i) int(dx)/((1+3sin^(2)x)) (ii) int(dx)/((3+2cos^(2)x))

Evaluate: int(1)/(sin x-sin2x)dx