Home
Class 12
MATHS
Sketch the region bounded by the curves ...

Sketch the region bounded by the curves `y=x^2a n dy=2/(1+x^2)` . Find the area.

Text Solution

Verified by Experts

The given curves are `y=x^(2)" (1)"`
`and" "y=(2)/(1+x^(2))" (2)"`
Solving (1) and (2), we have
`x^(2)=(2)/(1+x^(2))`
`"or "x^(4)+x^(2)-2=0`
`"or "(x^(2)-1)(x^(2)+2)=0`
`"or "(x^(2)-1)(x^(2)+2)=0`
`"or "x=pm 1`
`"Also, "y=(2)/(1+x^(2))` is an even function.
Hence, its graph is symmetrical about y-axis.
At x = 0, y = 2, by increasing the values of x,y decreases and when `xrarroo,yrarr0.`
Therefore, y=0 is an asymptote of the given curve.
Thus, the graphs of the two curves are as follows :

`"Required area "=2int_(0)^(1)((2)/(1+x^(2))-x^(2))dx`
`=(4 tan^(-1)x-(2x^(3))/(3))_(0)`
`=pi-(2)/(3)` sq. units.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Sketch the curves and identify the region bounded by the curves x=(1)/(2),x=2,y=log x an y=2^(x). Find the area of this region.

Sketch the region bounded by the curves y=sqrt(5-x^(2)) and y=|x-1| and find its area.

Knowledge Check

  • The area of the region bounded by the curves y=x^(2) " and " x=y^(2) is

    A
    `1/3`
    B
    `1/2`
    C
    `1/4`
    D
    3
  • Similar Questions

    Explore conceptually related problems

    Indicate the region bounded by the curves y=x^(2),y=x+2 and x -axis and obtain the area enclosed by them

    Sketch the region bounded by the curves y=log_(e)x and y=(log_(e)x)^(2). Also find the area of the region.

    Find by integration the area of the region bounded by the curve y=2x-x^2 and the x-axis.

    Indicate the region bounded by the curves x^(2)=y,y=x+2 and x-axis and the area enclosed by them is …...........

    Find the area of the region bounded by the curves y=sqrt(x+2) and y=(1)/(x+1) between the lines x=0 and x=2.

    Find the area of the region bounded by the curve y = (x ^(2) + 2) ^(2) , the X-axis and the lines x =1 and x =3.

    Examples: Find the area of the region bounded by the curve y^(2)=2y-x and the y-axis.