Home
Class 12
MATHS
If a = Sigma(n=0)^(oo) x^(n), b = Sigma...

If a `= Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1`, then -

A

`abc = a + b + c`

B

`ab + bc = ac + b`

C

`ac + bc + b`

D

`ab + ac = bc + a`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-8|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-9|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-6|1 Videos
  • RACE

    ALLEN|Exercise Race 21|10 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos

Similar Questions

Explore conceptually related problems

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then

Knowledge Check

  • If x = sum_(n=0)^(oo) a^(n), y=sum_(n=0)^(oo) b^(n), z = sum_(n=0)^(oo) C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

    A
    HP
    B
    Arithmetic -Geometric Progression
    C
    AP
    D
    GP
  • If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

    A
    xyz=x+y+z
    B
    xz+yz=xy+z
    C
    xy+yz=xz+y
    D
    xy+xz=yz+x
  • If x = sum_(n = 0)^(oo) a^(n), y = sum_(n = 0)^(oo) b^(n), z = sum_(n = 0)^(oo) c^(n) where a, b, c are in A.P. such that |a| lt 1, |b| lt 1 and |c| lt 1 , then x, y, z are in

    A
    A.P.
    B
    G.P.
    C
    H.P.
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If x=Sigma_(n=0)^(oo) a^n,y=Sigma_(n=0)^(oo) b^n,z=Sigma_(n=0)^(oo) c^n where a, b,and c are in A.P and |a|lt 1 ,|b|lt 1 and |c|1 then prove that x,y and z are in H.P

    Let a=Sigma_(n=0)^(oo) (x^(3n))/((3n))!, b =Sigma_(n=1)^(oo) (x^(3n-2))/(3n-2)! and C=Sigma_(n=1)^(oo) (x^(3n-1))/(3n-1)! and w be a complex cube root of unity Statement 1: a+b+c =e^(x),a+bw+cw^(2)=e^(wx) and a+bw^(2)+cw=e^(w^(2)) Statement 2: a^(3)+b^(3)+C^(3)-3abc=1

    If a=Sigma_(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma_(n=1)^(oo)(x^(3n-2))/(3n-2!) and C= Sigma_(n=1)^(oo)(x^(3n-1))/(3n-1!) then the value of a^(3)+b^(3)+C^(3)-3abc is

    If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

    For 0 lt phi le ( pi )/( 2) , if x = sum_(n=0)^(oo) cos^(2n) phi , y = sum_(n=0)^(oo) sin ^(2n) phi , z= sum _(n=0)^(oo) cos^(2n) phi sin ^(2n ) phi , then