The value of `1^(2) + 3^(2) + 5^(2) + ..... + 25^(2)` is
A
1728
B
1456
C
2925
D
1469
Text Solution
AI Generated Solution
The correct Answer is:
To find the value of \(1^2 + 3^2 + 5^2 + \ldots + 25^2\), we can follow these steps:
### Step 1: Identify the sequence
The numbers in the series are the squares of the first 13 odd numbers. The odd numbers can be expressed in the form \(2n - 1\), where \(n\) is a positive integer.
### Step 2: Determine the last term
The last term in our series is \(25\). We need to find \(n\) such that:
\[
2n - 1 = 25
\]
Solving for \(n\):
\[
2n = 26 \implies n = 13
\]
Thus, we will sum the squares of the first 13 odd numbers.
### Step 3: Write the summation
We can express the sum as:
\[
\sum_{n=1}^{13} (2n - 1)^2
\]
### Step 4: Expand the square
Expanding \((2n - 1)^2\):
\[
(2n - 1)^2 = 4n^2 - 4n + 1
\]
So, we can rewrite the summation:
\[
\sum_{n=1}^{13} (2n - 1)^2 = \sum_{n=1}^{13} (4n^2 - 4n + 1)
\]
### Step 5: Split the summation
We can separate the summation:
\[
\sum_{n=1}^{13} (4n^2 - 4n + 1) = 4\sum_{n=1}^{13} n^2 - 4\sum_{n=1}^{13} n + \sum_{n=1}^{13} 1
\]
### Step 6: Calculate each summation
1. **Sum of the first \(n\) natural numbers**:
\[
\sum_{n=1}^{k} n = \frac{k(k + 1)}{2}
\]
For \(k = 13\):
\[
\sum_{n=1}^{13} n = \frac{13 \times 14}{2} = 91
\]
2. **Sum of the squares of the first \(n\) natural numbers**:
\[
\sum_{n=1}^{k} n^2 = \frac{k(k + 1)(2k + 1)}{6}
\]
For \(k = 13\):
\[
\sum_{n=1}^{13} n^2 = \frac{13 \times 14 \times 27}{6} = 819
\]
3. **Sum of 1's**:
\[
\sum_{n=1}^{13} 1 = 13
\]
### Step 7: Substitute back into the equation
Now substituting these values back:
\[
4 \sum_{n=1}^{13} n^2 = 4 \times 819 = 3276
\]
\[
-4 \sum_{n=1}^{13} n = -4 \times 91 = -364
\]
\[
\sum_{n=1}^{13} 1 = 13
\]
Combining these:
\[
3276 - 364 + 13 = 2925
\]
### Final Answer
Thus, the value of \(1^2 + 3^2 + 5^2 + \ldots + 25^2\) is:
\[
\boxed{2925}
\]
Topper's Solved these Questions
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-17|1 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-18|1 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-15|1 Videos
RACE
ALLEN|Exercise Race 21|10 Videos
TEST PAPER
ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos
Similar Questions
Explore conceptually related problems
The value of 5^(-2) is equal to 25.
Find the value of 2.5^2 + 2 ( 2.5 ) ( 7.5 ) + 7.5^2
The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1)) is :
The value of 3(1)/(5) - [2(1)/(2) - ((5)/(6) - ((2)/(5) + (3)/(10) - (4)/(15))] is :
Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms