Home
Class 12
MATHS
The value of 1^(2) + 3^(2) + 5^(2) + ......

The value of `1^(2) + 3^(2) + 5^(2) + ..... + 25^(2)` is

A

1728

B

1456

C

2925

D

1469

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(1^2 + 3^2 + 5^2 + \ldots + 25^2\), we can follow these steps: ### Step 1: Identify the sequence The numbers in the series are the squares of the first 13 odd numbers. The odd numbers can be expressed in the form \(2n - 1\), where \(n\) is a positive integer. ### Step 2: Determine the last term The last term in our series is \(25\). We need to find \(n\) such that: \[ 2n - 1 = 25 \] Solving for \(n\): \[ 2n = 26 \implies n = 13 \] Thus, we will sum the squares of the first 13 odd numbers. ### Step 3: Write the summation We can express the sum as: \[ \sum_{n=1}^{13} (2n - 1)^2 \] ### Step 4: Expand the square Expanding \((2n - 1)^2\): \[ (2n - 1)^2 = 4n^2 - 4n + 1 \] So, we can rewrite the summation: \[ \sum_{n=1}^{13} (2n - 1)^2 = \sum_{n=1}^{13} (4n^2 - 4n + 1) \] ### Step 5: Split the summation We can separate the summation: \[ \sum_{n=1}^{13} (4n^2 - 4n + 1) = 4\sum_{n=1}^{13} n^2 - 4\sum_{n=1}^{13} n + \sum_{n=1}^{13} 1 \] ### Step 6: Calculate each summation 1. **Sum of the first \(n\) natural numbers**: \[ \sum_{n=1}^{k} n = \frac{k(k + 1)}{2} \] For \(k = 13\): \[ \sum_{n=1}^{13} n = \frac{13 \times 14}{2} = 91 \] 2. **Sum of the squares of the first \(n\) natural numbers**: \[ \sum_{n=1}^{k} n^2 = \frac{k(k + 1)(2k + 1)}{6} \] For \(k = 13\): \[ \sum_{n=1}^{13} n^2 = \frac{13 \times 14 \times 27}{6} = 819 \] 3. **Sum of 1's**: \[ \sum_{n=1}^{13} 1 = 13 \] ### Step 7: Substitute back into the equation Now substituting these values back: \[ 4 \sum_{n=1}^{13} n^2 = 4 \times 819 = 3276 \] \[ -4 \sum_{n=1}^{13} n = -4 \times 91 = -364 \] \[ \sum_{n=1}^{13} 1 = 13 \] Combining these: \[ 3276 - 364 + 13 = 2925 \] ### Final Answer Thus, the value of \(1^2 + 3^2 + 5^2 + \ldots + 25^2\) is: \[ \boxed{2925} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-17|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-18|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-15|1 Videos
  • RACE

    ALLEN|Exercise Race 21|10 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos

Similar Questions

Explore conceptually related problems

The value of 5^(-2) is equal to 25.

Find the value of 2.5^2 + 2 ( 2.5 ) ( 7.5 ) + 7.5^2

Knowledge Check

  • The value of 25 - 5 [2 + 3 (2 - 2(5 - 3) + 5) - 10] div 4 is :

    A
    5
    B
    23.25
    C
    23.75
    D
    25
  • The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1)) is :

    A
    0
    B
    1
    C
    `6(1/4)`
    D
    `5(1/4)`
  • The value of 3(1)/(5) - [2(1)/(2) - ((5)/(6) - ((2)/(5) + (3)/(10) - (4)/(15))] is :

    A
    `6/5`
    B
    `(11)/(10)`
    C
    `9/(10)`
    D
    `(13)/(5)`
  • Similar Questions

    Explore conceptually related problems

    What is the simplified value of (1.25) ^(3) - 2.25 (1.25) ^(2) + 3.75 ( 0.75) ^(2) -(0.75) ^(3)

    Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms

    The value of [(1),(-2),(3)] [4 " "5" "2][(2),(-3),(5)] is

    What is the value of 1^2+3^2+5^2+……15^2 ?

    The ratio 25^(2.5) : 5^(3) is same as