Home
Class 8
MATHS
Find each of the following products: (...

Find each of the following products:
(i) `(x + 6) (x + 6)` (ii) `(4x + 5y) (4x + 5y)` (iii) `(7a + 9b) (7a + 9b)`
(iv) `((2)/(3) x + (4)/(5)y) ((2)/(3) x + (4)/(5) y)` (v) `(x^(2) + 7)(x^(2) + 7)` (vi) `((5)/(6) a^(2) + 2) ((5)/(6) a^(2) + 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given products step by step, we will use the identity for the square of a binomial, which states that: \[ (a + b)^2 = a^2 + 2ab + b^2 \] Now, let's solve each part: ### (i) \((x + 6)(x + 6)\) 1. Recognize that this is the square of a binomial: \[ (x + 6)^2 \] 2. Apply the identity: \[ = x^2 + 2 \cdot x \cdot 6 + 6^2 \] 3. Calculate: \[ = x^2 + 12x + 36 \] **Final Answer for (i):** \(x^2 + 12x + 36\) ### (ii) \((4x + 5y)(4x + 5y)\) 1. Recognize that this is also the square of a binomial: \[ (4x + 5y)^2 \] 2. Apply the identity: \[ = (4x)^2 + 2 \cdot (4x) \cdot (5y) + (5y)^2 \] 3. Calculate: \[ = 16x^2 + 40xy + 25y^2 \] **Final Answer for (ii):** \(16x^2 + 40xy + 25y^2\) ### (iii) \((7a + 9b)(7a + 9b)\) 1. Recognize that this is the square of a binomial: \[ (7a + 9b)^2 \] 2. Apply the identity: \[ = (7a)^2 + 2 \cdot (7a) \cdot (9b) + (9b)^2 \] 3. Calculate: \[ = 49a^2 + 126ab + 81b^2 \] **Final Answer for (iii):** \(49a^2 + 126ab + 81b^2\) ### (iv) \(\left(\frac{2}{3}x + \frac{4}{5}y\right)\left(\frac{2}{3}x + \frac{4}{5}y\right)\) 1. Recognize that this is the square of a binomial: \[ \left(\frac{2}{3}x + \frac{4}{5}y\right)^2 \] 2. Apply the identity: \[ = \left(\frac{2}{3}x\right)^2 + 2 \cdot \left(\frac{2}{3}x\right) \cdot \left(\frac{4}{5}y\right) + \left(\frac{4}{5}y\right)^2 \] 3. Calculate: \[ = \frac{4}{9}x^2 + \frac{16}{15}xy + \frac{16}{25}y^2 \] **Final Answer for (iv):** \(\frac{4}{9}x^2 + \frac{16}{15}xy + \frac{16}{25}y^2\) ### (v) \((x^2 + 7)(x^2 + 7)\) 1. Recognize that this is the square of a binomial: \[ (x^2 + 7)^2 \] 2. Apply the identity: \[ = (x^2)^2 + 2 \cdot (x^2) \cdot 7 + 7^2 \] 3. Calculate: \[ = x^4 + 14x^2 + 49 \] **Final Answer for (v):** \(x^4 + 14x^2 + 49\) ### (vi) \(\left(\frac{5}{6}a^2 + 2\right)\left(\frac{5}{6}a^2 + 2\right)\) 1. Recognize that this is the square of a binomial: \[ \left(\frac{5}{6}a^2 + 2\right)^2 \] 2. Apply the identity: \[ = \left(\frac{5}{6}a^2\right)^2 + 2 \cdot \left(\frac{5}{6}a^2\right) \cdot 2 + 2^2 \] 3. Calculate: \[ = \frac{25}{36}a^4 + \frac{20}{6}a^2 + 4 \] Simplifying \(\frac{20}{6} = \frac{10}{3}\): \[ = \frac{25}{36}a^4 + \frac{10}{3}a^2 + 4 \] **Final Answer for (vi):** \(\frac{25}{36}a^4 + \frac{10}{3}a^2 + 4\) ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6E (Tick the correct answer in each of the following:)|19 Videos
  • OPERATIONS ON ALGEBRAIC EXPRESSIONS

    RS AGGARWAL|Exercise Exercise 6C|15 Videos
  • LINEAR EQUATIONS

    RS AGGARWAL|Exercise TEST PAPER-8 (D) (Write .T. for true and .F. for false for each of the following:)|1 Videos
  • PARALLELOGRAMS

    RS AGGARWAL|Exercise Exercise 16B|10 Videos

Similar Questions

Explore conceptually related problems

Find each of the following products: (i) (4x + 5y) (4x - 5y) (ii) (3x^(2) + 2y^(2)) (3x^(2) - 2y^(2))

Find each of the following products: (i) (4x - 7y) (4x - 7y) (ii) (3x^(2) - 4y^(2)) (3x^(2) - 4y^(2))

Knowledge Check

  • (x)/(2) - ( y )/(9) = 6, ( x) /( 7) + ( y ) /(3) = 5 .

    A
    ` x = 14 , y = 9 `
    B
    ` x = 15 , y = 9 `
    C
    ` x = 14 , y = 3 `
    D
    ` x = 16 , y = 9 `
  • Similar Questions

    Explore conceptually related problems

    Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

    Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

    Find each of the following products: (i) 5a^(2) b^(2) xx (3a^(2) - 4ab + 6b^(2)) (ii) (-3x^(2)y) xx (4x^(2) y - 3xy^(2) + 4x - 5y)

    Find the degree of each of the following polynomials : (i) 5x^(2)-2x+1 " " (ii) 1-5t+t^(4) " " (iii) 7 " " (iv) x^(4)-3x^(6)+2

    (6x-7)/(2)+(9-2x)/(5)=12+(x)/(4)-(2)/(3)+(4x)/(3)

    Work out the following divisions. (i) (10x - 25) -: 5 (ii) (10x - 25) -: (2x - 5) (iii) 10y(6y + 21) -: 5(2y + 7) (iv) 96abc(3a -12)(5b - 30) -: 144(a - 4)(b - 6)

    Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))