Home
Class 8
MATHS
1-2ab - (a ^(2) +b ^(2)) = ?...

`1-2ab - (a ^(2) +b ^(2)) = ? `

A

`(1+ a-b) (1+ a+b)`

B

`(1 + a+ b) (1- a +b)`

C

`(1 + a+b) (1-a-b)`

D

`(1+ a- b) (1 - a+b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(1 - 2ab - (a^2 + b^2)\), we can follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ 1 - 2ab - (a^2 + b^2) \] We can rewrite it as: \[ 1 - 2ab - a^2 - b^2 \] ### Step 2: Rearrange the terms Now, we can rearrange the terms: \[ 1 - a^2 - b^2 - 2ab \] ### Step 3: Recognize the pattern Notice that the expression \(a^2 + b^2 + 2ab\) is the expansion of \((a + b)^2\). Therefore, we can rewrite our expression: \[ 1 - (a^2 + b^2 + 2ab) = 1 - (a + b)^2 \] ### Step 4: Apply the difference of squares formula Now, we can use the difference of squares formula, which states that \(x^2 - y^2 = (x + y)(x - y)\). Here, we can let \(x = 1\) and \(y = (a + b)\): \[ 1 - (a + b)^2 = (1 + (a + b))(1 - (a + b)) \] ### Step 5: Write the final factorization Thus, the final factorization of the expression is: \[ (1 + a + b)(1 - a - b) \] ### Summary of the solution The expression \(1 - 2ab - (a^2 + b^2)\) can be factored as: \[ (1 + a + b)(1 - a - b) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    RS AGGARWAL|Exercise EXERCISE 7D|42 Videos
  • EXPONENTS

    RS AGGARWAL|Exercise TEST PAPER-2|18 Videos
  • INTRODUCTION TO COORDINATE GEOMETRY

    RS AGGARWAL|Exercise EXERCISE B (OBJECTIVE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

What is the lowest common multiple of ab (x^(2)+1) + x (a^(2)+b^(2)) and ab (x^(2)-1) + x(a^(2)-b^(2)) ?

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to

Knowledge Check

  • Factorise : 1 + 2 ab - (a ^(2) + b ^(2))

    A
    `(1 - a + b) (1 - a -b)`
    B
    `(1 + a + b) (1 - a + b)`
    C
    `(1+ a + b) (1 - a + b)`
    D
    `(1 + a - b ) (1 + a + b)`
  • If ax + by =1 and bx + ay = ( 2 ab)/(a ^(2) + b ^(2)) then (x ^(2) + y ^(2)) (a ^(2) + b ^(2)) is equal to

    A
    1
    B
    2
    C
    `0.5`
    D
    0
  • If n is a root of the equation (1 - ab) x^(2) - (a^(2) + b^(2)) x - (1 - ab) = 0 and n hormonic means are inserted between a and b, then the difference between the last and the first of the means equals

    A
    b - a
    B
    ab(b - a)
    C
    a(b - a)
    D
    ab(a - b)
  • Similar Questions

    Explore conceptually related problems

    If ( a + b - 6)^(2) +a^(2) + b^(2) + 1 + 2b = 2ab + 2a, then value of a is

    If ax + by = 1 and bx + ay = ( 2 ab)/( a^(2) + b^(2)) then ( x^(2) + y^(2)) ( a^(2) + b^(2)) is equal to

    If [ sqrt (a ^(2) + b^(2) + ab)] + [ sqrt (a^(2) + b^(2) - ab)] = 1 then what is the value of (1 - a^(2)) (1 - b^(2)) ?

    If a = sqrt(8) - sqrt(7) and a = (1)/(b) , then (a^(2) + b^(2) - 3ab)/(a^(2) + ab + b^(2)) is equal to

    If a = 1 and b = (-3), the value of 4a^(3)b^(2) - 3a^(2)b + 4ab^(2) - ab is