Minimum value of `(sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha),`
where `alpha!=pi/2,beta!=pi/2,0
Text Solution
Verified by Experts
The correct Answer is:
8
Topper's Solved these Questions
PROGRESSION & SERIES
FIITJEE|Exercise MATRIX MATCH TYPE|3 Videos
PROBABILITY
FIITJEE|Exercise Exercise 7|2 Videos
QUADRATIC EQUATION & EXPRESSION
FIITJEE|Exercise NUMERICAL BASED|3 Videos
Similar Questions
Explore conceptually related problems
Minimum value of (sec^(4)alpha)/(tan^(2)beta)+(sec^(4)beta)/(tan^(2)alpha), where alpha!=(pi)/(2),beta!=(pi)/(2),0
Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8 . If each term in the expression is well defined.
If (sec^(4)alpha)/(sec^(2)beta)-(tan^(4)alpha)/(tan^(2)beta)=1 where alpha,betane(pi)/(2) , then find the value of (sec^(4)beta)/(sec^(2)alpha)-(tan^(4)beta)/(tan^(2)alpha)
If x sec alpha+y tan alpha=x sec beta+y tan beta=a , then sec alpha*sec beta=
The value of tan^(2)alpha-tan^(2)beta-(1)/(2)sin(alpha-beta)sec^(2)alpha sec^(2)beta is zero if
Maximum value of sin alpha+sin beta+2, where alpha +beta =120^(^^)@ alpha,beta in (0,pi/2)
If sec alpha is the average of sec(alpha-2 beta) and sec(alpha+2 beta) then the value of (2sin^(2)beta-sin^(2)alpha) where beta!=n pi is