Home
Class 12
MATHS
The value of the integral int(0)^(4){x^(...

The value of the integral `int_(0)^(4){x^(3)-6x^(2)+12x-4+(x-2)cos(x-2)}dx` is equal to

A

12

B

16

C

0

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{4} \left( x^3 - 6x^2 + 12x - 4 + (x-2)\cos(x-2) \right) dx, \] we can break it down into two parts: \[ I = I_1 + I_2, \] where \[ I_1 = \int_{0}^{4} \left( x^3 - 6x^2 + 12x - 4 \right) dx \] and \[ I_2 = \int_{0}^{4} (x-2) \cos(x-2) \, dx. \] ### Step 1: Calculate \( I_1 \) We will first compute \( I_1 \): \[ I_1 = \int_{0}^{4} \left( x^3 - 6x^2 + 12x - 4 \right) dx. \] Using the power rule for integration, we have: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C. \] Thus, we can compute each term: 1. \(\int x^3 \, dx = \frac{x^4}{4}\) 2. \(\int -6x^2 \, dx = -6 \cdot \frac{x^3}{3} = -2x^3\) 3. \(\int 12x \, dx = 12 \cdot \frac{x^2}{2} = 6x^2\) 4. \(\int -4 \, dx = -4x\) Putting it all together: \[ I_1 = \left[ \frac{x^4}{4} - 2x^3 + 6x^2 - 4x \right]_{0}^{4}. \] Now, we evaluate this from 0 to 4: \[ = \left( \frac{4^4}{4} - 2 \cdot 4^3 + 6 \cdot 4^2 - 4 \cdot 4 \right) - \left( \frac{0^4}{4} - 2 \cdot 0^3 + 6 \cdot 0^2 - 4 \cdot 0 \right). \] Calculating the upper limit: \[ = \left( \frac{256}{4} - 2 \cdot 64 + 6 \cdot 16 - 16 \right) \] \[ = 64 - 128 + 96 - 16 \] \[ = 64 + 96 - 128 - 16 = 16. \] Thus, \[ I_1 = 16. \] ### Step 2: Calculate \( I_2 \) Next, we compute \( I_2 \): \[ I_2 = \int_{0}^{4} (x-2) \cos(x-2) \, dx. \] To evaluate this integral, we can use the substitution \( u = x - 2 \), which gives \( du = dx \). The limits change as follows: - When \( x = 0 \), \( u = -2 \). - When \( x = 4 \), \( u = 2 \). Thus, we have: \[ I_2 = \int_{-2}^{2} u \cos(u) \, du. \] The function \( u \cos(u) \) is an odd function (since \( \cos(u) \) is even and \( u \) is odd). The integral of an odd function over a symmetric interval around zero is zero: \[ I_2 = 0. \] ### Step 3: Combine Results Now we can combine the results: \[ I = I_1 + I_2 = 16 + 0 = 16. \] Thus, the value of the integral is \[ \boxed{16}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 104

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 107

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-4)^(4)(x^(3)-6x^(2)+12x-8)dx is

Evaluate the integrals int_(0)^(2)(dx)/(x+4-x^(2))

Knowledge Check

  • The value of integral int_(2)^(4)(dx)/(x) is :-

    A
    `3 log_(e)2`
    B
    `log_(e)2`
    C
    `log_(e)4`
    D
    `2log_(e)8`
  • The value of integral int_(-2)^(4) x[x]dx is

    A
    `41//2`
    B
    20
    C
    `21//2`
    D
    none of these
  • The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

    A
    `(x^(4))/(2(1+x)^(2))+C`
    B
    `(x^(6))/(2(x+1)^(2))+C`
    C
    `(x^(4))/((x+1)^(2))+C`
    D
    `(x^(6))/(2(x+1)^(3))+C`
  • Similar Questions

    Explore conceptually related problems

    The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

    int(6x+4)/((x-2)(x-3))dx is equal to

    The value of the definite integral int_(0)^((pi)/(2))(cos^(10)x*sin x}dx, is equal to

    The integral int_(2)(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is equal to

    The value of the definite integral int_(2)^(4)(x(3-x)(4+x)(6-x)(10-x)+sinx)dx equals