Home
Class 12
MATHS
Let f(x)=-x^(2)+x+p, where p is a real n...

Let `f(x)=-x^(2)+x+p`, where p is a real number. If `g(x)=[f(x)] and g(x)` is discontinuous at `x=(1)/(2)`, then p - cannot be (where `[.]` represents the greatest integer function)

A

`(1)/(2)`

B

`(3)/(4)`

C

`(7)/(4)`

D

`-(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the function \( f(x) = -x^2 + x + p \) and determine the conditions under which the greatest integer function \( g(x) = [f(x)] \) is discontinuous at \( x = \frac{1}{2} \). ### Step 1: Evaluate \( f\left(\frac{1}{2}\right) \) First, we need to find the value of \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right) + p = -\frac{1}{4} + \frac{1}{2} + p \] Now, simplifying this expression: \[ f\left(\frac{1}{2}\right) = -\frac{1}{4} + \frac{2}{4} + p = \frac{1}{4} + p \] ### Step 2: Determine when \( g(x) \) is discontinuous The function \( g(x) = [f(x)] \) will be discontinuous at \( x = \frac{1}{2} \) if \( f\left(\frac{1}{2}\right) \) is an integer. This means that \( \frac{1}{4} + p \) must be an integer. Let \( n \) be an integer. Then we can write: \[ \frac{1}{4} + p = n \implies p = n - \frac{1}{4} \] ### Step 3: Analyze the values of \( p \) From the equation \( p = n - \frac{1}{4} \), we can see that \( p \) will take values that are \( \frac{3}{4}, \frac{7}{4}, \frac{11}{4}, \ldots \) when \( n = 1, 2, 3, \ldots \) or \( -\frac{1}{4}, -\frac{5}{4}, -\frac{9}{4}, \ldots \) when \( n = 0, -1, -2, \ldots \). ### Step 4: Identify the integer values of \( p \) To ensure that \( g(x) \) is discontinuous at \( x = \frac{1}{2} \), \( p \) must not be of the form \( n - \frac{1}{4} \) for any integer \( n \). This means \( p \) cannot be \( \frac{1}{4} \) less than any integer. ### Conclusion Thus, the value of \( p \) cannot be \( \frac{1}{4} \) because if \( p = \frac{1}{4} \), then \( f\left(\frac{1}{2}\right) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \), which is not an integer, making \( g(x) \) continuous at that point. ### Final Answer Therefore, \( p \) cannot be \( \frac{1}{4} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 19

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Knowledge Check

  • If f(x)=[x](sin kx)^(p) is continuous for real x, then (where [.] represents the greatest integer function)

    A
    `k in [npi, n in I], p gt 0`
    B
    `k in {2npi, n in I}, p gt0`
    C
    `k in {npi, n in I}, p in R-{0}`
    D
    `k in {npi, n I, n ne 0}, p in R-{0}`
  • If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

    A
    `underset(xrarr0^(+))(lim)f(x)=-1`
    B
    `underset(xrarr0^(-))(lim)f(x)=0`
    C
    `underset(xrarr0)(lim)f(0)=-1`
    D
    `underset(xrarr0)(lim)f(x)=0`
  • Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

    A
    `f(x) != 0` for all real values of x
    B
    f(x) = 0 for only two real value of x
    C
    f(x) = 0 for infinite values of x.
    D
    f(x) = 0 for no real value of x
  • Similar Questions

    Explore conceptually related problems

    f(x)=[(x^(3)+4x)/(2)] is discontinuous at x equal to (where [.] denotes the greatest integer function)

    f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

    Find the points of discontinuity of the function: f(x)=[[x]]-[x-1], where [.] represents the greatest integer function

    Find the range of f(x)=(x-[x])/(1-[x]+x'), where [] represents the greatest integer function.

    Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.