Home
Class 12
MATHS
Let f(x)=-x^(2)+x+p, where p is a real n...

Let `f(x)=-x^(2)+x+p`, where p is a real number. If `g(x)=[f(x)] and g(x)` is discontinuous at `x=(1)/(2)`, then p - cannot be (where `[.]` represents the greatest integer function)

A

`(1)/(2)`

B

`(3)/(4)`

C

`(7)/(4)`

D

`-(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the function \( f(x) = -x^2 + x + p \) and determine the conditions under which the greatest integer function \( g(x) = [f(x)] \) is discontinuous at \( x = \frac{1}{2} \). ### Step 1: Evaluate \( f\left(\frac{1}{2}\right) \) First, we need to find the value of \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right) + p = -\frac{1}{4} + \frac{1}{2} + p \] Now, simplifying this expression: \[ f\left(\frac{1}{2}\right) = -\frac{1}{4} + \frac{2}{4} + p = \frac{1}{4} + p \] ### Step 2: Determine when \( g(x) \) is discontinuous The function \( g(x) = [f(x)] \) will be discontinuous at \( x = \frac{1}{2} \) if \( f\left(\frac{1}{2}\right) \) is an integer. This means that \( \frac{1}{4} + p \) must be an integer. Let \( n \) be an integer. Then we can write: \[ \frac{1}{4} + p = n \implies p = n - \frac{1}{4} \] ### Step 3: Analyze the values of \( p \) From the equation \( p = n - \frac{1}{4} \), we can see that \( p \) will take values that are \( \frac{3}{4}, \frac{7}{4}, \frac{11}{4}, \ldots \) when \( n = 1, 2, 3, \ldots \) or \( -\frac{1}{4}, -\frac{5}{4}, -\frac{9}{4}, \ldots \) when \( n = 0, -1, -2, \ldots \). ### Step 4: Identify the integer values of \( p \) To ensure that \( g(x) \) is discontinuous at \( x = \frac{1}{2} \), \( p \) must not be of the form \( n - \frac{1}{4} \) for any integer \( n \). This means \( p \) cannot be \( \frac{1}{4} \) less than any integer. ### Conclusion Thus, the value of \( p \) cannot be \( \frac{1}{4} \) because if \( p = \frac{1}{4} \), then \( f\left(\frac{1}{2}\right) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \), which is not an integer, making \( g(x) \) continuous at that point. ### Final Answer Therefore, \( p \) cannot be \( \frac{1}{4} \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 19

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[x](sin kx)^(p) is continuous for real x, then (where [.] represents the greatest integer function)

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

f(x)=[(x^(3)+4x)/(2)] is discontinuous at x equal to (where [.] denotes the greatest integer function)

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1], where [.] represents the greatest integer function

Find the range of f(x)=(x-[x])/(1-[x]+x'), where [] represents the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

NTA MOCK TESTS-NTA JEE MOCK TEST 109-MATHEMATICS
  1. Let f(x)=-x^(2)+x+p, where p is a real number. If g(x)=[f(x)] and g(x)...

    Text Solution

    |

  2. If n(A) denotes the number of elements in set A and if n(A) = 4, n(B)...

    Text Solution

    |

  3. The number of integers for which the equation sin^(-1)x+cos^(-1)x+tan^...

    Text Solution

    |

  4. If the straight line y=x meets y=f(x) at P, where f(x) is a solution o...

    Text Solution

    |

  5. Two whole numbers are randomly chosen and multiplied, then the chance ...

    Text Solution

    |

  6. The minimum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  7. The coefficient of x^(6) in the expansion of (1-x)^(8)(1+x)^(12) is eq...

    Text Solution

    |

  8. For a complex number Z. If arg(Z) in (-pi, pi], then arg{1+cos.(6pi)/(...

    Text Solution

    |

  9. If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 i...

    Text Solution

    |

  10. The number of solutions of the equation tan x sin x-1=tanx-sinx, AA in...

    Text Solution

    |

  11. For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x, the sum of all local ex...

    Text Solution

    |

  12. Let f(n)=Sigma(r=1)^(10n)(6+rd) and g(n)=Sigma(r=1)^(n)(6+rd), where n...

    Text Solution

    |

  13. The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle...

    Text Solution

    |

  14. The value of lim(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal ...

    Text Solution

    |

  15. The equation of an ex - circle of a triangle formed by the common tang...

    Text Solution

    |

  16. If the observation 1, 2, 3, ……….., n occur with frequency, n,(n-1), (n...

    Text Solution

    |

  17. The direction cosines of two lines satisfy 2l+2m-n=0 and lm+mn+nl=0. T...

    Text Solution

    |

  18. A statue of height 4 m stands on a tower of height 10 m. The angle sub...

    Text Solution

    |

  19. If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)], then the dete...

    Text Solution

    |

  20. The area bounded by the curve y=cosx and y=sin 2x, AA x in [(pi)/(6), ...

    Text Solution

    |