Home
Class 12
MATHS
Let O be the origin and vec(OX) , vec(O...

Let O be the origin and` vec(OX) , vec(OY) , vec(OZ)` be three unit vector in the directions of the sides `vec(QR) , vec(RP),vec(PQ)` respectively , of a triangle PQR.
`|vec(OX)xxvec(OY)|=`

A

sin (P + Q)

B

sin 2R

C

sin (P+R)

D

sin (Q+R)

Text Solution

Verified by Experts

The correct Answer is:
A

`|vec(OX)xxvec(OY)|=|vec(OX)||vec(OY)|sin (pi-R)`
`=sin R=sin (P+Q)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

Let vec a, vec b, vec c be three vectors from vec a xx (vec b xxvec c) = (vec a xxvec b) xxvec c, if

Knowledge Check

  • Let O be the origin , and vec(OX),vec(OY),vec(OZ) be three unit vector in the directions of the sides vec(OR) , vec(RP) , vec(PQ) respectively, of a triangle PQR, Then , |vec(OX) xx vec(OY)| =

    A
    sin ( P +Q)
    B
    sin 2R
    C
    sin (P +R)
    D
    sin (Q +R)
  • The unit vector bisecting vec(OY) and vec(OZ) is

    A
    `(veci+vecj+veck)/sqrt(3)`
    B
    `(veci-veck)/sqrt(2)`
    C
    `(vecj+veck)/sqrt(2)`
    D
    `(-vecj+veck)/sqrt(2)`
  • Let vec(p),vec(q),vec(r) be three unit vectors such that vec(p)xxvec(q)=vec(r) . If vec(a) is any vector such that [vec(a)vec(q)vec(r )]=1,[vec(a)vec(r)vec(p )]=2 , and [vec(a)vec(p)vec(q )]=3 , then vec(a)=

    A
    `vec(p)+3q+vec(r )`
    B
    `vec(3p)+vec(2q)+vec(r )`
    C
    vec(p)-vec(2q)-vec(3r)`
    D
    `vec(p)+vec(2q)+vec(3q)`
  • Similar Questions

    Explore conceptually related problems

    If vec a, vec b, vec c be three vectors such that [vec with bvec c] = 4 then [vec a xxvec bvec b xxvec cvec c xxvec a] =

    vec a, vec b, vec c are three non-zero vectors. If o + be defined as vec x o + vec y = vec x + vec y + vec x xxvec y and

    If vec a,vec b,vec c are three vectors such that vec a+vec b+vec c=vec 0, then prove that vec a xxvec b=vec b xxvec c=vec c xxvec a

    if vec a is a unit vector and projection of vec x along vec a is 2 units and (vec a xxvec x)+vec b=vec x then vec x is given by

    Let vec(a), vec(b), vec(c) be three vectors in the xyz space such that vec(a)xxvec(b)=vec(b)xxvec(c)=vec(c)xx vec(a) ne 0 If A, B, C are points with position vector vec(a), vec(b), vec(c) respectively, then the number of possible position of the centroid of triangle ABC is -