Home
Class 12
MATHS
The value of int(0)^(1)({2x}-1)({3x}-1)d...

The value of `int_(0)^(1)({2x}-1)({3x}-1)dx`, (where {} denotes fractional part opf x) is equal to :

A

`19/36`

B

`19/144`

C

`19/72`

D

`19/18`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \{2x - 1\} \{3x - 1\} \, dx \), where \(\{x\}\) denotes the fractional part of \(x\), we will break down the problem step by step. ### Step 1: Understand the fractional part function The fractional part function \(\{x\}\) can be expressed as: \[ \{x\} = x - \lfloor x \rfloor \] where \(\lfloor x \rfloor\) is the greatest integer less than or equal to \(x\). ### Step 2: Rewrite the integral We can rewrite the integral using the definition of the fractional part: \[ I = \int_{0}^{1} (2x - 1 - \lfloor 2x \rfloor)(3x - 1 - \lfloor 3x \rfloor) \, dx \] ### Step 3: Determine the points of discontinuity The functions \(\lfloor 2x \rfloor\) and \(\lfloor 3x \rfloor\) change at certain points within the interval \([0, 1]\): - \(\lfloor 2x \rfloor\) changes at \(x = \frac{1}{2}\) - \(\lfloor 3x \rfloor\) changes at \(x = \frac{1}{3}\) and \(x = \frac{2}{3}\) Thus, we will break the integral into intervals: \([0, \frac{1}{3}]\), \([\frac{1}{3}, \frac{1}{2}]\), \([\frac{1}{2}, \frac{2}{3}]\), and \([\frac{2}{3}, 1]\). ### Step 4: Evaluate the integral over each interval #### Interval 1: \(x \in [0, \frac{1}{3}]\) In this interval: - \(\lfloor 2x \rfloor = 0\) - \(\lfloor 3x \rfloor = 0\) Thus, \[ I_1 = \int_{0}^{\frac{1}{3}} (2x - 1)(3x - 1) \, dx = \int_{0}^{\frac{1}{3}} (6x^2 - 5x + 1) \, dx \] Calculating this integral: \[ I_1 = \left[ 2x^3 - \frac{5}{2}x^2 + x \right]_{0}^{\frac{1}{3}} = \left(2 \left(\frac{1}{3}\right)^3 - \frac{5}{2} \left(\frac{1}{3}\right)^2 + \frac{1}{3}\right) - 0 \] \[ = \left(2 \cdot \frac{1}{27} - \frac{5}{2} \cdot \frac{1}{9} + \frac{1}{3}\right) = \left(\frac{2}{27} - \frac{5}{18} + \frac{1}{3}\right) \] Finding a common denominator (54): \[ = \left(\frac{4}{54} - \frac{15}{54} + \frac{18}{54}\right) = \frac{7}{54} \] #### Interval 2: \(x \in [\frac{1}{3}, \frac{1}{2}]\) In this interval: - \(\lfloor 2x \rfloor = 0\) - \(\lfloor 3x \rfloor = 1\) Thus, \[ I_2 = \int_{\frac{1}{3}}^{\frac{1}{2}} (2x - 1)(3x - 2) \, dx = \int_{\frac{1}{3}}^{\frac{1}{2}} (6x^2 - 7x + 2) \, dx \] Calculating this integral: \[ I_2 = \left[ 2x^3 - \frac{7}{2}x^2 + 2x \right]_{\frac{1}{3}}^{\frac{1}{2}} = \left(2 \left(\frac{1}{2}\right)^3 - \frac{7}{2} \left(\frac{1}{2}\right)^2 + 2 \cdot \frac{1}{2}\right) - \left(2 \left(\frac{1}{3}\right)^3 - \frac{7}{2} \left(\frac{1}{3}\right)^2 + 2 \cdot \frac{1}{3}\right) \] Calculating each term: \[ = \left(2 \cdot \frac{1}{8} - \frac{7}{8} + 1\right) - \left(2 \cdot \frac{1}{27} - \frac{7}{18} + \frac{2}{3}\right) \] Finding a common denominator (72): \[ = \left(\frac{18}{72} - \frac{63}{72} + \frac{72}{72}\right) - \left(\frac{8}{72} - \frac{28}{72} + \frac{48}{72}\right) \] \[ = \left(\frac{27}{72}\right) - \left(\frac{28}{72}\right) = -\frac{1}{72} \] #### Interval 3: \(x \in [\frac{1}{2}, \frac{2}{3}]\) In this interval: - \(\lfloor 2x \rfloor = 1\) - \(\lfloor 3x \rfloor = 1\) Thus, \[ I_3 = \int_{\frac{1}{2}}^{\frac{2}{3}} (2x - 2)(3x - 2) \, dx = \int_{\frac{1}{2}}^{\frac{2}{3}} (6x^2 - 10x + 4) \, dx \] Calculating this integral: \[ I_3 = \left[ 2x^3 - 5x^2 + 4x \right]_{\frac{1}{2}}^{\frac{2}{3}} = \left(2 \left(\frac{2}{3}\right)^3 - 5 \left(\frac{2}{3}\right)^2 + 4 \cdot \frac{2}{3}\right) - \left(2 \left(\frac{1}{2}\right)^3 - 5 \left(\frac{1}{2}\right)^2 + 4 \cdot \frac{1}{2}\right) \] Calculating each term: \[ = \left(2 \cdot \frac{8}{27} - 5 \cdot \frac{4}{9} + \frac{8}{3}\right) - \left(2 \cdot \frac{1}{8} - \frac{5}{4} + 2\right) \] Finding a common denominator (108): \[ = \left(\frac{16}{27} - \frac{60}{27} + \frac{108}{27}\right) - \left(\frac{27}{108} - \frac{135}{108} + \frac{216}{108}\right) \] \[ = \left(\frac{64}{27}\right) - \left(\frac{108}{108}\right) = \frac{64}{27} - 1 = \frac{37}{27} \] #### Interval 4: \(x \in [\frac{2}{3}, 1]\) In this interval: - \(\lfloor 2x \rfloor = 1\) - \(\lfloor 3x \rfloor = 2\) Thus, \[ I_4 = \int_{\frac{2}{3}}^{1} (2x - 2)(3x - 2) \, dx = \int_{\frac{2}{3}}^{1} (6x^2 - 10x + 4) \, dx \] Calculating this integral: \[ I_4 = \left[ 2x^3 - 5x^2 + 4x \right]_{\frac{2}{3}}^{1} = \left(2 \cdot 1^3 - 5 \cdot 1^2 + 4 \cdot 1\right) - \left(2 \cdot \left(\frac{2}{3}\right)^3 - 5 \cdot \left(\frac{2}{3}\right)^2 + 4 \cdot \frac{2}{3}\right) \] Calculating each term: \[ = \left(2 - 5 + 4\right) - \left(2 \cdot \frac{8}{27} - 5 \cdot \frac{4}{9} + \frac{8}{3}\right) \] Finding a common denominator (27): \[ = 1 - \left(\frac{16}{27} - \frac{60}{27} + \frac{72}{27}\right) = 1 - \left(\frac{28}{27}\right) = 1 - 1.037 = -\frac{1}{27} \] ### Step 5: Combine the results Now we combine all the integrals: \[ I = I_1 + I_2 + I_3 + I_4 = \frac{7}{54} - \frac{1}{72} + \frac{37}{27} - \frac{1}{27} \] Finding a common denominator (108): \[ = \frac{14}{108} - \frac{1.5}{108} + \frac{148}{108} - \frac{4}{108} = \frac{14 - 1.5 + 148 - 4}{108} = \frac{156.5}{108} = \frac{313}{216} \] Thus, the final value of the integral is: \[ \boxed{\frac{313}{216}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - II|23 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - III|30 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1){x^(2)+x-3}dx, where {x} denotes thefractional part of x, is equal to

Find int_(0)^(100)3{sqrt(x)}dx, where {x} denotes the fractional part of x.

Knowledge Check

  • The value of int_(0)^(4) {x} dx (where , {.} denotes fractional part of x) is equal to

    A
    `(4)/(3)`
    B
    `(5)/(3)`
    C
    `(7)/(3)`
    D
    None of these
  • lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

    A
    16
    B
    24
    C
    32
    D
    8
  • int _(2)^(3){x} dx is equal to (where {.} denotes, fractional part of x)

    A
    `17/2`
    B
    `7/2`
    C
    `5/2`
    D
    `1/2`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

    lim_(x rarr0){(1+x)^((2)/(x))}( where {x} denotes the fractional part of x ) is equal to.

    lim_(x rarr1)(x sin{x})/(x-1)," where "{x}" denotes the fractional part of "x," is equal to "

    The value of lim_(x rarr0)sin^(-1){x}( where {*} denotes fractional part of x ) is

    The value of lim_(xto0)sin^(-1){x} (where {.} denotes fractional part of x) is