Home
Class 12
MATHS
The value of int(x-1)e^(-x) dx is equal ...

The value of `int(x-1)e^(-x)` dx is equal to

A

`-xe^(x)+C`

B

`xe^(x)+C`

C

`-xe^(-x)+C`

D

`xe^(-x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x - 1)e^{-x} \, dx \), we can use the method of integration by parts. Let's break it down step by step. ### Step 1: Identify \( u \) and \( dv \) We will choose: - \( u = x - 1 \) (which we will differentiate) - \( dv = e^{-x} \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we find \( du \) and \( v \): - Differentiate \( u \): \[ du = dx \] - Integrate \( dv \): \[ v = \int e^{-x} \, dx = -e^{-x} \] ### Step 3: Apply the Integration by Parts Formula The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int (x - 1)e^{-x} \, dx = (x - 1)(-e^{-x}) - \int (-e^{-x}) \, dx \] This simplifies to: \[ = -(x - 1)e^{-x} + \int e^{-x} \, dx \] ### Step 4: Integrate \( e^{-x} \) We already know: \[ \int e^{-x} \, dx = -e^{-x} \] So we substitute this back into our equation: \[ = -(x - 1)e^{-x} - e^{-x} \] ### Step 5: Combine Like Terms Now we can simplify: \[ = -(x - 1)e^{-x} - e^{-x} = -xe^{-x} + e^{-x} - e^{-x} = -xe^{-x} \] ### Step 6: Add the Constant of Integration Finally, we include the constant of integration \( C \): \[ \int (x - 1)e^{-x} \, dx = -xe^{-x} + C \] ### Final Answer Thus, the value of the integral is: \[ \int (x - 1)e^{-x} \, dx = -xe^{-x} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

int a^(x)e^(x)dx" is equal to "

The value of int_(-1)^(1)(x|x|)dx is equal to

Knowledge Check

  • int(x+1)^(2)e^(x)dx is equal to

    A
    `xe^(x)+C`
    B
    `x^(2)e^(x)+C`
    C
    `(x+1)e^(x)+C`
    D
    `(x^(2)+1)e^(x)+C`
  • The value of int_(-1)^(1)(x|x|)dx is equal to

    A
    1
    B
    `(1)/(2)`
    C
    0
    D
    None of these
  • The value of int_0^1 e^(x^2) x dx is equal to:

    A
    `1/3(e-1)`
    B
    `1/2(e-1)`
    C
    `1/3(e+1)`
    D
    `1/2(e+1)`
  • Similar Questions

    Explore conceptually related problems

    int(1)/(e^(x)+1)dx is equal to

    int(1)/(e^(x)+1)dx is equal to

    int(1)/(e^(x)-1)dx is equal to

    int e^(x)dx is equal to

    int(dx)/(1+e^(-x)) is equal to