Home
Class 12
MATHS
If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)...

If `f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3))),0lexle3,` then range of `f(x)` is

A

`[0,(pi)/2)`

B

`[0,(pi)/4]`

C

`[(pi)/6,(pi)/3]`

D

`[0,(pi)/3]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \tan^{-1}\left(\frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}\right) + \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) \) for \( 0 \leq x \leq 3 \), we will follow these steps: ### Step 1: Simplify the Function We start by simplifying the function using the property of the inverse tangent: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] if \( ab < 1 \). Let: \[ a = \frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}, \quad b = \frac{x}{\sqrt{3}} \] ### Step 2: Check the Condition for the Property First, we need to check if \( ab < 1 \): \[ ab = \left(\frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}\right) \cdot \left(\frac{x}{\sqrt{3}}\right) \] Calculating \( ab \): \[ ab = \frac{(\sqrt{3}x - 3x)x}{\sqrt{3}(3\sqrt{3} + x^2)} = \frac{x(\sqrt{3} - 3)x}{\sqrt{3}(3\sqrt{3} + x^2)} \] We need to ensure that this expression is less than 1 for the given range of \( x \). ### Step 3: Find the Function Values at the Endpoints Now we will evaluate \( f(x) \) at the endpoints of the interval \( [0, 3] \). 1. **At \( x = 0 \)**: \[ f(0) = \tan^{-1}\left(\frac{\sqrt{3} \cdot 0 - 3 \cdot 0}{3\sqrt{3} + 0^2}\right) + \tan^{-1}\left(\frac{0}{\sqrt{3}}\right) = \tan^{-1}(0) + \tan^{-1}(0) = 0 \] 2. **At \( x = 3 \)**: \[ f(3) = \tan^{-1}\left(\frac{\sqrt{3} \cdot 3 - 3 \cdot 3}{3\sqrt{3} + 3^2}\right) + \tan^{-1}\left(\frac{3}{\sqrt{3}}\right) \] Simplifying the first term: \[ f(3) = \tan^{-1}\left(\frac{3\sqrt{3} - 9}{3\sqrt{3} + 9}\right) + \tan^{-1}(\sqrt{3}) \] The second term \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \). Now we simplify the first term: \[ = \tan^{-1}\left(\frac{3(\sqrt{3} - 3)}{3(\sqrt{3} + 3)}\right) = \tan^{-1}\left(\frac{\sqrt{3} - 3}{\sqrt{3} + 3}\right) \] ### Step 4: Determine the Range Now we need to find the range of \( f(x) \) from \( x = 0 \) to \( x = 3 \). - At \( x = 0 \), \( f(0) = 0 \). - At \( x = 3 \), we need to compute \( f(3) \) accurately, but we know that \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \). ### Conclusion The range of \( f(x) \) is from \( 0 \) to \( \frac{\pi}{3} \). Thus, the final answer is: \[ \text{Range of } f(x) = [0, \frac{\pi}{3}] \]

To find the range of the function \( f(x) = \tan^{-1}\left(\frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}\right) + \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) \) for \( 0 \leq x \leq 3 \), we will follow these steps: ### Step 1: Simplify the Function We start by simplifying the function using the property of the inverse tangent: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] if \( ab < 1 \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE|Exercise MATCH THE COLUMN|5 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

"tan^(-1)"((sqrt(x)-x)/(1+sqrt(x^(3))))"

tan^(-1)((sqrt(x)(3-x))/(1-3x))

If f(x)=(sin^(-1)x+tan^(-1)x)/(pi)+2sqrt(x), then the range of f(x) is

tan^(2)x-(1+sqrt(3))tan x+sqrt(3)<0

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x>(1)/(sqrt(3))

The range of f(x)=tan^(-1)sqrt([x]+[-x])+sqrt(3-|x|)+(1)/(x^(2))

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .