Home
Class 12
MATHS
Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x...

`Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x}))`, where `{x}` denotes the fractional part of x.
`R=lim_(xto0+) f(x)` is equal to

A

`np(1-n)`

B

`-np(1+n)`

C

`n^(2)p`

D

`np(1+n)`

Text Solution

Verified by Experts

The correct Answer is:
A

We have `f(x)=(sin^(-1)(1-{x})cos^(-1)(1-{x}))/(sqrt(2{x})(1-{x}))`
`:.underset(xto0^(+))limf(x)=underset(hto0)limf(0+h)`
`=underset(hto0)lim(sin^(-1)(1-{0+h})cos^(-1)(1-{0+h}))/(sqrt(2{0+h})(1-{0+h}))`
`=underset(hto0)lim(sin^(-1)(1-h)cos^(-1)(1-h))/(sqrt(2h)(1-h))`
`=underset(hto0)lim(sin^(-1)(1-h))/((1-h))underset(hto0)lim(cos^(-1)(1-h))/(sqrt(2)h)`
In second limit, put `1-h=costheta.` Then
`underset(xto0^(+))limf(x)=underset(hto0)lim(sin^(-1)(1-h))/((1-h))underset(hto0)lim(cos^(-1)(costheta))/(sqrt(2(1-costheta)))`
`=underset (hto0)lim(sin^(-1)(1-h))/((1-h))underset(thetato0)lim(theta)/(2sin(theta//2))(becausethetagt0)`
`=sin^(-1)1xx1=pi//2`
and `underset(xto0^(-))limf(x)=underset(hto0)limf(0-h)`
`=underset(hto0)lim(sin^(-1)(1-{0-h})cos^(-1)(1-{0-h}))/(sqrt(2{0-h}")")(1-{0-h}))`
`=underset(hto0)lim(sin^(-1)(1+h-1)cos^(-1)(1+h-1))/(sqrt(2(-h+1))(1+h-1))`
`=underset(hto0)lim(sin^(-1)h)/(h)underset(hto0)lim(cos^(-1)h)/(sqrt(2(1-h)))`
`=1(pi//2)/(sqrt(2))=(pi)/(2sqrt(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

let f(x)=(cos^(-1)(1-{x})sin^(-1)(1-{x}))/(sqrt(2{x}(1-{x}))) where {x} denotes the fractional part of x then

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Knowledge Check

  • Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

    A
    `(pi)/(2)`
    B
    `(pi)/(2sqrt(2))`
    C
    `(pi)`
    D
    `(1)/(2sqrt(2))`
  • lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

    A
    16
    B
    24
    C
    32
    D
    8
  • Let f(x) = {x} , the fractional part of x then int_(-1)^(1) f(x) dx is equal to

    A
    `1`
    B
    `2`
    C
    `0`
    D
    `1//2`
  • Similar Questions

    Explore conceptually related problems

    Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

    Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

    lim_(x rarr1)(x sin{x})/(x-1)," where "{x}" denotes the fractional part of "x," is equal to "

    lim_(x rarr0){(1+x)^((2)/(x))}( where {x} denotes the fractional part of x ) is equal to.

    If {x} denotes the fractional part of x, then lim_(xrarr1) (x sin {x})/(x-1) , is