Home
Class 12
MATHS
Let f :RtoR be a positive, increasing fu...

Let `f :RtoR` be a positive, increasing function with
`lim_(xtooo) (f(3x))/(f(x))=1`. Then `lim_(xtooo) (f(2x))/(f(x))` is equal to

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)` is a positive increasing function. Therefore,
`0ltf(x)ltf(2x)ltf(3x)`
`implies" "0lt1lt(f(2x))/(f(x))lt(f(3x))/(f(x))`
`implies" "underset(xtooo)lim1ltunderset(xtooo)lim(f(2x))/(f(x))ltunderset(xtooo)lim(f(3x))/(f(x))" "(becauseunderset(xtooo)lim(f(3x))/(f(x))=1)`
By Sandwich theorem, we get
`underset(xtooo)lim(f(2x))/(f(x))=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1 then lim_(x rarr oo)(f(2x))/(f(x))=

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1. Then lim_(x rarr oo)(f(2x))/(f(x))=(1)(2)/(3)(2)(3)/(2)(3)3(4)1

lim_(xtooo) (1-cos^(3)4x)/(x^(2)) is equal to

Let f:rarr R rarr(0,oo) be strictly increasing function such that lim_(x rarr oo)(f(7x))/(f(x))=1 .Then, the value of lim_(x rarr oo)[(f(5x))/(f(x))-1] is equal to

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to

lim_(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to