Home
Class 12
MATHS
Flind the product of two matrices A =[...

Flind the product of two matrices
`A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]]`
Show that, AB is the zero matrix if `theta and phi` differ by an
odd multipl of `pi/2`.

A

5(6!)

B

3(6!)

C

12(6!)

D

8(6!)

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-IV|6 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise PART-III|21 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[(cos^2theta,costheta sintheta),(cos theta sintheta, sin^2theta)] and B=[(cos^2 phi, cos phi sin phi),(cos phisinphi,sin^2phi)], show that AB is zero matrix if theta and phi differ by an odd multiple of pi/2.

If AB=O for the matrices A=[[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]] and B=[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]] then theta-phi is

Knowledge Check

  • If AB =0, then for the matrices. A = [{:(cos^(2)theta, cos theta sin theta),(cos theta sin theta, sin^(2)theta):}] and B = [{:(cos^(2)phi, cos phi sin phi),(cos phi sin phi, sin^(2)phi):}], theta - phi is:

    A
    an odd multiple of `pi/2`
    B
    an odd multiple of `pi`
    C
    an even multiple of `pi/2`
    D
    0
  • If A=[(cos^(2) theta, cos theta sin theta),(cos theta sin theta, sin^(2)theta)] and B=[(cos^(2) phi, cos phi sin phi),(cos phi sin phi, sin^(2)phi)] are the two matrices such that the product AB is the null matrix then theta-phi is equal to

    A
    0
    B
    multiple of `pi`
    C
    on odd multiple of `pi//2`
    D
    None of these
  • If AB=0 where A = [(cos^2theta, costhetasintheta),(costhetasintheta,sin^2theta)] and B=[(cos^2phi, cosphisinphi),(cosphisinphi,sin^2phi)] , then |theta-phi| is equal to

    A
    0
    B
    `pi/4`
    C
    `pi/2`
    D
    `pi`
  • Similar Questions

    Explore conceptually related problems

    If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

    If theta-phi=pi/2, then show that [[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]]*[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]]=0

    If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi), (cos phi sin phi,sin^2 phi)]=0

    If A=[[cos theta, sin theta],[sin theta, cos theta]],B=[[cos phi, sin phi],[sin phi, cos phi]] show that AB=BA.

    If AB=0, then for the matrices A=[(cos^(2)theta, cos theta sin theta) and B=[(cos^(2)phi, cos phi sin phi),(cos phi sin phi, sin^(2)phi)], theta -phi is