Home
Class 12
MATHS
If 3^n is a factor of the determinant |{...

If `3^n` is a factor of the determinant `|{:(1,1,1),(.^nC_1,.^(n+3)C_1,.^(n+6)C_1),(.^nC_2, .^(n+3)C_2, .^(n+6)C_2):}|` then the maximum value of n is ……..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \( n \) such that \( 3^n \) is a factor of the determinant \[ D = \begin{vmatrix} 1 & 1 & 1 \\ \binom{n}{1} & \binom{n+3}{1} & \binom{n+6}{1} \\ \binom{n}{2} & \binom{n+3}{2} & \binom{n+6}{2} \end{vmatrix} \] ### Step 1: Calculate the Binomial Coefficients The binomial coefficients are calculated as follows: - \( \binom{n}{1} = n \) - \( \binom{n+3}{1} = n + 3 \) - \( \binom{n+6}{1} = n + 6 \) - \( \binom{n}{2} = \frac{n(n-1)}{2} \) - \( \binom{n+3}{2} = \frac{(n+3)(n+2)}{2} \) - \( \binom{n+6}{2} = \frac{(n+6)(n+5)}{2} \) ### Step 2: Substitute the Values into the Determinant Substituting the values of the binomial coefficients into the determinant gives: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ n & n+3 & n+6 \\ \frac{n(n-1)}{2} & \frac{(n+3)(n+2)}{2} & \frac{(n+6)(n+5)}{2} \end{vmatrix} \] ### Step 3: Factor Out Common Terms We can factor out \( \frac{1}{2} \) from the third row: \[ D = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ n & n+3 & n+6 \\ n(n-1) & (n+3)(n+2) & (n+6)(n+5) \end{vmatrix} \] ### Step 4: Apply Row Operations We can perform row operations to simplify the determinant. Subtract the first row from the second and third rows: \[ D = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 3 & 6 \\ 0 & (n+3)(n+2) - n(n-1) & (n+6)(n+5) - n(n-1) \end{vmatrix} \] ### Step 5: Simplify the Determinant Now we need to calculate the elements in the third row: 1. For the second column: \[ (n+3)(n+2) - n(n-1) = n^2 + 5n + 6 - (n^2 - n) = 6n + 6 \] 2. For the third column: \[ (n+6)(n+5) - n(n-1) = n^2 + 11n + 30 - (n^2 - n) = 12n + 30 \] Thus, the determinant simplifies to: \[ D = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 3 & 6 \\ 0 & 6n + 6 & 12n + 30 \end{vmatrix} \] ### Step 6: Calculate the Determinant Calculating the determinant, we have: \[ D = \frac{1}{2} \cdot 1 \cdot \begin{vmatrix} 3 & 6 \\ 6n + 6 & 12n + 30 \end{vmatrix} \] Calculating this 2x2 determinant: \[ = \frac{1}{2} \cdot (3(12n + 30) - 6(6n + 6)) = \frac{1}{2} \cdot (36n + 90 - 36n - 36) = \frac{1}{2} \cdot 54 = 27 \] ### Step 7: Determine the Power of 3 Now we need to find the maximum \( n \) such that \( 3^n \) divides \( 27 \): \[ 27 = 3^3 \] Thus, the maximum value of \( n \) such that \( 3^n \) divides \( 27 \) is: \[ \boxed{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    VK JAISWAL|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VK JAISWAL|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

Delta[[ Prove that ,, 11,1,1nC1,(n+1)C1,(n+2)C1(n+1)C2,(n+2)C2,(n+3)C2]]=1

Knowledge Check

  • The greatest value of n for which the determinant Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))| is divisible by 3^(n) , is

    A
    7
    B
    5
    C
    3
    D
    1
  • If^(n -1)C_3 + ^(n-1)C_4 gt ^nC_3 ,

    A
    5
    B
    6
    C
    4
    D
    7
  • If ^nC_3+^nC_4 gt ^(n+1)C_3 , then

    A
    `n gt 6`
    B
    `n gt 7`
    C
    `n lt 6`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If ^(n+1)C_(r+1): ^nC_r: ^(n-1)C_(r-1)=11:6:2 find the values of n and r.

    Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

    Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

    Determinant |{:(a+b+nc,(n-1)a,(n-1)b),((n-1)c,b+c+na,(n-1)b),((n-1)c,(n-1)a,c+a+nb):}| is equal to

    If n is a positvie integers, the value of E=(2n+1).^(n)C_(0)+(2n-1).^(n)C_(1)+(2n-3)^(n)C_(2)+………+1. ^(n)C_(n)2 is