Home
Class 10
MATHS
If b^(2) - 4ac ge 0 then write the roots...

` If b^(2) - 4ac ge 0` then write the roots of a quadratic equation `ax^(2) + bx + c = 0`

Text Solution

Verified by Experts

The correct Answer is:
`(- b + sqrt (b^(2) - 4ac))/(2a) and (-b-sqrt(b^(2) - 4ac))/(2a)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VGS PUBLICATION-BRILLIANT|Exercise OBSERVATION BITS TO SOLVE VARIOUS BITS GIVEN IN THE PUBLIC EXAMINATION|30 Videos
  • QUADRATIC EQUATIONS

    VGS PUBLICATION-BRILLIANT|Exercise CREATIVE BITS FOR CCE MODEL EXAMINATION|130 Videos
  • QUADRATIC EQUATIONS

    VGS PUBLICATION-BRILLIANT|Exercise OPTIONAL EXERCISE|8 Videos
  • PROGRESSIONS (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise PROGRESSIONS (MULTIPLE CHOICE QUESTION)|20 Videos
  • QUADRATIC EQUATIONS (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise QUADRATIC EQUATIONS (MULTIPLE CHOICE QUESTION)|20 Videos

Similar Questions

Explore conceptually related problems

The roots of a quadratic equation ax^2- bx + c = 0, a ne 0 are

Write the roots of quadratic equation ax^2+bx+c=0 when b^2-4ac>0 .

Knowledge Check

  • The roots of a quadratic equation ax^(2) + bx + c = 0 "is"

    A
    `(-b + sqrt (b^(2) - 4ac))/(ac)`
    B
    `(-b - sqrt (b^(2) - 4))/3`
    C
    `(-b-sqrt (b - 4ac))/2`
    D
    `(-b pm sqrt (b^(2) - 4ac))/(2a)`
  • "If" b^(2) - 4ac gt 0 then the roots of the quadratic equation are…

    A
    real and distinct
    B
    real and equal
    C
    imaginary
    D
    none
  • "If" b^(2) -4ac = 0 then the roots of the quadratic equation are…

    A
    real and distinct
    B
    real and equal
    C
    imaginary
    D
    none
  • Similar Questions

    Explore conceptually related problems

    Show that the sum of roots of a quadratic equation ax^(2) + bx + c = 0 "is" (-b)/a

    Write the two roots of quadratic equation ax^2+bx+c=0 when b^2-4ac=0 is given.

    If b^(2) -4ac lt 0 then the roots of the quadratic equation are…

    The product of roots of quadratic equation ax^(2) + bx + c = 0 is

    if 0 0 nad c > 0 then both the roots of the equation 2ax ^2 + 3bx + 5c =0