Home
Class 12
MATHS
Find the value of sin^(-1) ((3)/(5)) + t...

Find the value of `sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) \), we can follow these steps: ### Step 1: Define the angle for \( \sin^{-1}\left(\frac{3}{5}\right) \) Let \( \theta = \sin^{-1}\left(\frac{3}{5}\right) \). This means that \( \sin \theta = \frac{3}{5} \). ### Step 2: Find \( \cos \theta \) Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \( \cos \theta = \frac{4}{5} \) (since \( \theta \) is in the first quadrant). ### Step 3: Find \( \tan \theta \) Now, we can find \( \tan \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 4: Rewrite the expression Now we can rewrite the original expression: \[ \sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \theta + \tan^{-1}\left(\frac{1}{7}\right) \] ### Step 5: Use the formula for \( \tan^{-1}(x) + \tan^{-1}(y) \) We can use the formula: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] where \( x = \tan \theta = \frac{3}{4} \) and \( y = \frac{1}{7} \). ### Step 6: Calculate \( \tan^{-1}\left(\frac{3/4 + 1/7}{1 - (3/4)(1/7)}\right) \) Calculating the numerator: \[ \frac{3}{4} + \frac{1}{7} = \frac{21 + 4}{28} = \frac{25}{28} \] Calculating the denominator: \[ 1 - \left(\frac{3}{4} \cdot \frac{1}{7}\right) = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] ### Step 7: Combine the results Now we can substitute back into the formula: \[ \tan^{-1}\left(\frac{\frac{25}{28}}{\frac{25}{28}}\right) = \tan^{-1}(1) \] ### Step 8: Find the final value Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we have: \[ \sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4} \] ### Final Answer \[ \sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4} \]

To solve the problem \( \sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) \), we can follow these steps: ### Step 1: Define the angle for \( \sin^{-1}\left(\frac{3}{5}\right) \) Let \( \theta = \sin^{-1}\left(\frac{3}{5}\right) \). This means that \( \sin \theta = \frac{3}{5} \). ### Step 2: Find \( \cos \theta \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.6|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|80 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan(sin^(-1)((3)/(5))+cot^(-1)((3)/(2)))

Find the value of sin(sin^(-1)((4)/(5))+sin^(-1)((7)/(25)))

Knowledge Check

  • The value of tan[sin^(-1) (3/5)+tan^(-1) (2/3)] is

    A
    `6/17`
    B
    `7/16`
    C
    `5/7`
    D
    `17/6`
  • Similar Questions

    Explore conceptually related problems

    Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

    Find value of sin(tan^(-1)x)

    The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

    Find the value of tan^(-1) (1//2) - tan^(-1) (-3) (-7)

    Find the value of sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((1)/(2))+tan^(-1)(-(1)/(sqrt(3)))

    Find the value of 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)

    Find the value of sin^(-1)(sin7) and sin^(-1)(sin(-5))