Home
Class 11
MATHS
C0+C1+C2+.........+C(N-1)+CN=...

`C_0+C_1+C_2+.........+C_(N-1)+C_N=`

A

`2^(n-1)`

B

`""^(2n C_n)`

C

`2^(n)`

D

`2^(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( C_0 + C_1 + C_2 + \ldots + C_{N-1} + C_N \), where \( C_k \) represents the binomial coefficient \( \binom{N}{k} \), we can use the Binomial Theorem. ### Step-by-Step Solution: 1. **Understanding the Binomial Theorem**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] where \( \binom{n}{k} \) is the binomial coefficient. 2. **Setting Values for \( x \) and \( y \)**: To find the sum of the binomial coefficients from \( C_0 \) to \( C_N \), we can set \( x = 1 \) and \( y = 1 \): \[ (1 + 1)^N = \sum_{k=0}^{N} \binom{N}{k} 1^{N-k} 1^k \] 3. **Calculating the Left Side**: The left side simplifies to: \[ 2^N \] 4. **Writing the Right Side**: The right side becomes: \[ \sum_{k=0}^{N} \binom{N}{k} = \binom{N}{0} + \binom{N}{1} + \binom{N}{2} + \ldots + \binom{N}{N} \] 5. **Conclusion**: Therefore, we have: \[ C_0 + C_1 + C_2 + \ldots + C_N = 2^N \] ### Final Answer: \[ C_0 + C_1 + C_2 + \ldots + C_N = 2^N \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -5|1 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -3|2 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|62 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If C_(0),C_(1),C_(2),........C_(n), are the Binomial coefficients in the expansion of (1+x)^(n),n being even,then C_(0)+(C_(0)+C_(1))+(C_(0)+C_(1)+C_(2))+....+(C_(0)+C_(1)+C_(2)+......+C_(n) is equal to

If C_(r) = .^(n)C_(r) then prove that (C_(0) + C_(1)) (C_(1) + C_(2)) "….." (C_(n-1) + C_(n)) = (C_(1)C_(2)"…."C_(n-1)C_(n))(n+1)^(n)//n!

Knowledge Check

  • If C_(0), C_(1), C_(2),.....,C_(n) are binomial coefficients, (where C_(r) = .^(n)C_(r)) , then the value of C_(0) - C_(1) + C_(2) - C_(3) + ....+(-1)^(n) C_(n) is equal to

    A
    `2^(n-1)`
    B
    `2^(n)`
    C
    `0`
    D
    `1`
  • If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

    A
    `(a + nb ) 2^(n)`
    B
    `(2a + nb) 2^(n)`
    C
    `(a + nv)2^(n-1)`
    D
    `(2a + nb) 2^(n-1)`
  • If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + …+ C_(n) x^(n) , then C_(0) - (C_(0) - C_(1)) + (C_(0) + C_(1) + C_(2))- (C_(0) + C_(1) + C_(2)+ C_(3)) + ...+ (-1)^(n-1) (C_0) + C_(1) + C_(2) + ...+ C_(n-1)) , when n is even integer is

    A
    a positive value
    B
    a negative value
    C
    divisivle by ` 2^(n-1)`
    D
    divisible by ` 2^(n)`
  • Similar Questions

    Explore conceptually related problems

    (C_(0)+C_(1))(C_(1)+C_(2))(C_(2)+C_(3))(C_(3)+C_(4)).........(C_(n-1)+C_(n))=(C_(0)C_(1)C_(2).....C_(n-1)(n+1)^(n))/(n!)

    (C_(0)+C_(1))(C_(1)+C_(2))(C_(2)+C_(3))...(C_(n-1)+C_(n))=(C_(0).C_(1).C_(2)......C_(n-1)(n+1)^(n))/(n!) .

    ( (C_0 +C_1)(C_1 + C_2)(C_2 +C_3).....(C_(n-1) +C_n))/(C_0C_1C_2....C_n)= (A) (n+1) ^n/n (B) (n+1)^(n-1)/n! (C) (n+1)^n/(n!)(D) (n+1)/(n!)

    prove that C_(0)C_(n)+C_(1)C_(n-1)+C_(2)C_(n-2)+.........+C_(n)C_(0)=2nC_(n)

    if S_(n)=C_(0)C_(1)+C_(1)C_(2)+...+C_(n-1)C_(n) and (S_(n+1))/(S_(n))=(15)/(4) then n is