Home
Class 12
MATHS
If vec a , vec b ,and vec c are there m...

If ` vec a , vec b` ,and `vec c` are there mutually perpendicular unit vectors and ` vec d` is a unit vector which makes equal angles with ` vec a , vec b` ,and `vec c`, then find the value of `| vec a+ vec b+ vec c+ vec d|^2`

A

`4 + 2 sqrt(2)`

B

`4 + 2 sqrt(3)`

C

`2 + sqrt(5)`

D

`3 + sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2 \) given that \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are mutually perpendicular unit vectors, and \( \vec{d} \) is a unit vector that makes equal angles with \( \vec{a}, \vec{b}, \) and \( \vec{c} \). ### Step 1: Write the expression for the magnitude squared We start with the expression: \[ |\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2 \] Using the property of magnitudes, we can expand this as: \[ |\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + |\vec{d}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{d} + \vec{c} \cdot \vec{d}) \] ### Step 2: Substitute known values Since \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are unit vectors: \[ |\vec{a}|^2 = |\vec{b}|^2 = |\vec{c}|^2 = |\vec{d}|^2 = 1 \] Thus, we have: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + |\vec{d}|^2 = 1 + 1 + 1 + 1 = 4 \] ### Step 3: Evaluate the dot products Since \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are mutually perpendicular, we have: \[ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0 \] The remaining dot products involve \( \vec{d} \): Let \( \vec{d} \) make an angle \( \theta \) with each of \( \vec{a}, \vec{b}, \vec{c} \). Then: \[ \vec{d} \cdot \vec{a} = |\vec{d}||\vec{a}|\cos\theta = \cos\theta \] \[ \vec{d} \cdot \vec{b} = \cos\theta \] \[ \vec{d} \cdot \vec{c} = \cos\theta \] Thus, we can write: \[ \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{d} + \vec{c} \cdot \vec{d} = 3\cos\theta \] ### Step 4: Combine everything Now substituting back into our expression: \[ |\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2 = 4 + 2(0 + 3\cos\theta) = 4 + 6\cos\theta \] ### Step 5: Find \( \cos\theta \) Since \( \vec{d} \) is a unit vector making equal angles with \( \vec{a}, \vec{b}, \vec{c} \), we can express: \[ \cos^2\theta + \cos^2\theta + \cos^2\theta = 1 \implies 3\cos^2\theta = 1 \implies \cos^2\theta = \frac{1}{3} \implies \cos\theta = \frac{1}{\sqrt{3}} \] ### Step 6: Substitute \( \cos\theta \) back Now substituting \( \cos\theta \) into our expression: \[ |\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2 = 4 + 6\left(\frac{1}{\sqrt{3}}\right) = 4 + \frac{6}{\sqrt{3}} = 4 + 2\sqrt{3} \] ### Final Answer Thus, the value of \( |\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2 \) is: \[ \boxed{4 + 2\sqrt{3}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos
  • VECTORS

    CENGAGE|Exercise Question Bank|23 Videos

Similar Questions

Explore conceptually related problems

if vec a,vec b and vec c are there mutually perpendicular unit vectors and vec a ia a unit vector make equal angles which vec a,vec b and vec c then find the value of |vec a+vec b+vec c+vec d|^(2)

If vec a,vec b,vec c are mutually perpendicular unit vectors,find |2vec a+vec b+vec c|

If vec a and vec b and vec c are mutually perpendicular unit vectors,write the value of |vec a+vec b+vec c|

vec a,vec b,vec c are mutually perpendicular unit vectors and vec d is a unit vector equally inclined to each other of vec a,vec b and vec c at an angle of 60^(@) then |vec a+vec b+vec c+vec d|^(2)=

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

If vec a,vec b,vec c are three mutually perpendicular unit vectors,then prove that |vec a+vec b+vec c|=sqrt(3)

If vec a and vec b are mutually perpendicular unit vectors,write the value of |vec a+vec b+vec c|

If vec a,vec b,vec c are three mutually perpendicular vectors of equal magniltgude,prove that vec a+vec b+vec c is equally inclined with vectors vec a,vec b, and vec r also find the angle.

If vec A, vec B and vec C are mutually perpendicular vectors, then find the value of vec A. vec (B + vec C) .

If vec a, and vec b are unit vectors,then find the greatest value of |vec a+vec b|+|vec a-vec b|