Home
Class 12
MATHS
Express sin^(-1)((sin x+ cos x)/(sqrt2))...

Express `sin^(-1)((sin x+ cos x)/(sqrt2))`, where `-(pi)/(4) lt x lt (pi)/(4)`, in the simplest form.

Text Solution

AI Generated Solution

To express \( \sin^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right) \) in its simplest form, we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \sin^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section B 21 B|1 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section B|4 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Answer the following questions 18Bs|1 Videos
  • QUESTION PAPER 2023

    XII BOARDS PREVIOUS YEAR|Exercise Question|45 Videos
  • XII Boards

    XII BOARDS PREVIOUS YEAR|Exercise All Questions|263 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4

Express tan^(-1) ((cos x )/( 1- sin x) ) , ( -3 pi)/(2) lt x lt (pi)/(2) in the simplest form

Knowledge Check

  • If cos x + sin x = a (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

    A
    `a^(2)`
    B
    `a sqrt((2-a))`
    C
    `a sqrt((2+a))`
    D
    `asqrt((2-a^(2)))`
  • If sec x =- (13)/(12) and (pi)/(2) lt x lt pi , find the value of sin 2x

    A
    `(60)/(169)`
    B
    `(-60)/(169)`
    C
    `(120)/(169)`
    D
    `(-120)/(169)`
  • If int_(0)^(t) (bx cos 4x- a sin 4x)/(x^(2)) dx= (a sin 4t)/(t)-1 , where 0 lt t lt (pi)/(4) , then the value of a, b are equal to

    A
    `(1)/(4), 1`
    B
    `-1, 4`
    C
    2, 2
    D
    2, 4
  • Similar Questions

    Explore conceptually related problems

    Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

    if cos x= (-sqrt(15))/(4) " and " (pi)/(2) lt x lt pi find the value of sin x .

    Solve |sin 3x + sinx | + |sin 3x - sinx |= sqrt3, - (pi)/(2) lt x lt (pi)/(2).

    int(sin x-cos x)/(sqrt(1-sin2x))e^(sin x)cos xdx, where [x in((pi)/(4),(3 pi)/(4))]

    Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)