Home
Class 12
MATHS
Let m be the minimum possible value of l...

Let m be the minimum possible value of `log_(3)(3^(y_(1))+3^(y_(2))+3^(y_(3)))`. Where `y_(1),y_(2),y_(3)` are real number for which `y_(1)+y_(2)+y_(3)=9` Let M be the maxmum possible value of `(log3x_(1)+log_(3) x_(2)+ log_(3) x_(2))` where `x_(1), x_(2), x_(3)` are positive real numbers for whcih `x_(1)+x_(2)+x_(3)=9` then the value of `log_(2)m^(3)+log_(3)(M^(2))` is _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value \( m \) of \( \log_3(3^{y_1} + 3^{y_2} + 3^{y_3}) \) given the constraint \( y_1 + y_2 + y_3 = 9 \), and the maximum value \( M \) of \( \log_3(x_1) + \log_3(x_2) + \log_3(x_3) \) given \( x_1 + x_2 + x_3 = 9 \). Finally, we will compute \( \log_2(m^3) + \log_3(M^2) \). ### Step 1: Finding the minimum value \( m \) 1. **Using the AM-GM Inequality**: \[ \frac{3^{y_1} + 3^{y_2} + 3^{y_3}}{3} \geq \sqrt[3]{3^{y_1} \cdot 3^{y_2} \cdot 3^{y_3}} \] This implies: \[ 3^{y_1} + 3^{y_2} + 3^{y_3} \geq 3 \sqrt[3]{3^{y_1 + y_2 + y_3}} = 3 \sqrt[3]{3^9} = 3 \cdot 27 = 81 \] 2. **Taking the logarithm**: \[ \log_3(3^{y_1} + 3^{y_2} + 3^{y_3}) \geq \log_3(81) = \log_3(3^4) = 4 \] Thus, the minimum value \( m = 4 \). ### Step 2: Finding the maximum value \( M \) 1. **Using the properties of logarithms**: \[ \log_3(x_1) + \log_3(x_2) + \log_3(x_3) = \log_3(x_1 \cdot x_2 \cdot x_3) \] 2. **Using the AM-GM Inequality again**: \[ \frac{x_1 + x_2 + x_3}{3} \geq \sqrt[3]{x_1 x_2 x_3} \] This implies: \[ 3 \geq \sqrt[3]{x_1 x_2 x_3} \implies x_1 x_2 x_3 \leq 27 \] 3. **Taking the logarithm**: \[ \log_3(x_1 x_2 x_3) \leq \log_3(27) = \log_3(3^3) = 3 \] Thus, the maximum value \( M = 3 \). ### Step 3: Calculating \( \log_2(m^3) + \log_3(M^2) \) 1. **Calculating \( m^3 \)**: \[ m^3 = 4^3 = 64 \implies \log_2(m^3) = \log_2(64) = 6 \] 2. **Calculating \( M^2 \)**: \[ M^2 = 3^2 = 9 \implies \log_3(M^2) = \log_3(9) = 2 \] 3. **Final Calculation**: \[ \log_2(m^3) + \log_3(M^2) = 6 + 2 = 8 \] ### Final Answer The value of \( \log_2(m^3) + \log_3(M^2) \) is \( \boxed{8} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE ADVANCED

    JEE ADVANCED PREVIOUS YEAR|Exercise MATHS|36 Videos

Similar Questions

Explore conceptually related problems

log_(8)y=-(1)/(log_(3)2), then the value of y is

The x,y,z are positive real numbers such that log_(2x)z=3,log_(5y)z=6, and log_(xy)z=(2)/(3), then the value of ((1)/(2z)) is .........

Knowledge Check

  • What is the value of log_(y) x^(5) log_(x) y^(2) log_(z) Z^(3) ?

    A
    a. 10
    B
    b. 20
    C
    c. 17
    D
    d. 19
  • What is the value of log_(y)x^(5)log_(x)y^(2)log_(z)z^(3) ?

    A
    10
    B
    20
    C
    30
    D
    60
  • The range of y=log_(3)(9-x^(2))

    A
    `{1,2}`
    B
    `(-oo,2]`
    C
    `(-oo,2)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Let x,y,z be positive real numbers such that log_(2x)z=3,log_(5y)z=6 and log_(xy)z=(2)/(3) then the value of z is

    If x and y are positive real numbers such that 2log(2y - 3x) = log x + log y," then find the value of " x/y .

    If log_(3) x log_(y) 3 log_(2) y = 5 , then x =

    If log_(3)xlog_(y)3log_(2)y=5 , then x=

    1 It log_(3)x+log_(3)y=2+log_(3)2 and log_(3)(x+y)=2 Then