Home
Class 12
MATHS
Let vectors vec a , vec b , vec c ,a n ...

Let vectors ` vec a , vec b , vec c ,a n d vec d` be such that `( vec axx vec b)xx( vec cxx vec d)=0.` Let `P_1a n dP_2` be planes determined by the pair of vectors ` vec a , vec b ,a n d vec c , vec d ,` respectively. Then the angle between `P_1a n dP_2` is a.`0` b. `pi//4` c. `pi//3` d. `pi//2`

Answer

Step by step text solution for Let vectors vec a , vec b , vec c ,a n d vec d be such that ( vec axx vec b)xx( vec cxx vec d)=0. Let P_1a n dP_2 be planes determined by the pair of vectors vec a , vec b ,a n d vec c , vec d , respectively. Then the angle between P_1a n dP_2 is a.0 b. pi//4 c. pi//3 d. pi//2 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Let the vector vec a,vec b,vec c,vec c,vec d be such that (vec a xxvec b)xx(vec c xxvec d)=vec 0. Let P_(1), and P_(2), be planes determined by the vectors vec a,vec b and vec c,vec d respectively.Then the angle between P_(1), and P_(2), is

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vec a, vec b, vec c and vec d are unit vectors such that (vec a xxvec b) * (vec c xxvec d) = 1 and vec a * vec c = (1) / (2)

For any four vectors,vec a,vec b,vec c and vec d prove that vec d*(vec a xx(vec b xx(vec c xxvec d)))=(vec b*vec d)[vec avec cvec d]

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=3\ a n d\ vec adot vec b=1, find the angle between.

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

Given four vectors vec a, vec b, vec c, vec d such that vec a + vec b + vec c = alphavec d, vec b + vec c + vec d = betavec a and that vec a, vec a, vec b, vec c are non-coplanar, then the sum vec a + vec b + vec c + vec d is

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot